**Ordinary Differential Equations and Dynamical Systems**

by Gerald Teschl

**Publisher**: Universitaet Wien 2009**Number of pages**: 297

**Description**:

This book provides an introduction to ordinary differential equations and dynamical systems. We start with some simple examples of explicitly solvable equations. Then we prove the fundamental results concerning the initial value problem: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore we consider linear equations, the Floquet theorem, and the autonomous linear flow.

Download or read it online for free here:

**Download link**

(3MB, PDF)

## Similar books

**The Hopf Bifurcation and Its Applications**

by

**J. E. Marsden, M. McCracken**-

**Springer**

The goal of these notes is to give a reasonably complete, although not exhaustive, discussion of what is commonly referred to as the Hopf bifurcation with applications to specific problems, including stability calculations.

(

**8826**views)

**A Short Introduction to Classical and Quantum Integrable Systems**

by

**O. Babelon**

An introduction to integrable systems. From the table of contents: Integrable dynamical systems; Solution by analytical methods; Infinite dimensional systems; The Jaynes-Cummings-Gaudin model; The Heisenberg spin chain; Nested Bethe Ansatz.

(

**7285**views)

**Dynamical Systems**

by

**Jose A. Tenreiro Machado (ed.)**-

**MDPI AG**

Complex systems are studied in many areas of natural sciences, social sciences, engineering and mathematics. This volume intends to contribute towards the dissemination of the multifaceted concepts in accepted use by the scientific community.

(

**2262**views)

**Stability Analysis via Matrix Functions Method**

by

**A. A. Martynyuk**-

**Bookboon**

The monograph presents a generalization of the well-known Lyapunov function method and related concepts to the matrix function case within the framework of systematic stability analysis of dynamical systems (differential equations).

(

**4704**views)