Linear Algebra for Informatics

Small book cover: Linear Algebra for Informatics

Linear Algebra for Informatics

Publisher: The University of Edinburgh
Number of pages: 69

These are the lecture notes and tutorial problems for the Linear Algebra module in Mathematics for Informatics 3. The module is divided into three parts. During the first part we will study real vector spaces and their linear maps. The second part will be devoted to univariate polynomials. The third and final part will serve as an introduction to algebraic coding theory, concentrating for definiteness on binary linear codes.

Download or read it online for free here:
Download link
(610KB, PDF)

Similar books

Book cover: Fundamentals of Linear AlgebraFundamentals of Linear Algebra
by - Arkansas Tech University
This book is addressed primarely to second and third year college students who have already had a course in calculus and analytic geometry. Its aim is solely to learn the basic theory of linear algebra within a semester period.
Book cover: Elementary Linear AlgebraElementary Linear Algebra
by - The Saylor Foundation
Introduction to linear algebra where everything is done with the row reduced echelon form and specific algorithms. The notions of vector spaces and linear transformations are at the end. Intended for a first course in linear algebra.
Book cover: Linear Algebra: An Introduction to Mathematical DiscourseLinear Algebra: An Introduction to Mathematical Discourse
- Wikibooks
The book was designed specifically for students who had not previously been exposed to mathematics as mathematicians view it. That is, as a subject whose goal is to rigorously prove theorems starting from clear consistent definitions.
Book cover: Linear Algebra: A Course for Physicists and EngineersLinear Algebra: A Course for Physicists and Engineers
by - De Gruyter Open
This textbook on linear algebra is written to be easy to digest by non-mathematicians. It introduces the concepts of vector spaces and mappings between them without dwelling on theorems and proofs too much. It is also designed to be self-contained.