Logo

Equivariant Stable Homotopy Theory

Large book cover: Equivariant Stable Homotopy Theory

Equivariant Stable Homotopy Theory
by

Publisher: Springer
ISBN/ASIN: 3540168206
ISBN-13: 9783540168201
Number of pages: 538

Description:
Our primary purpose in this volume is to establish the foundations of equivariant stable homotopy theory. To this end, we shall construct a stable homotopy category of G-spectra enjoying all of the good properties one might reasonably expect, where G is a compact Lie group. We shall use this category to study equivariant duality, equivariant transfer, the Burnside ring, and related topics in equivariant homology and cohomology theory.

Home page url

Download or read it online for free here:
Download link
(30MB, PDF)

Similar books

Book cover: Introduction to Topological GroupsIntroduction to Topological Groups
by - UCM
These notes provide a brief introduction to topological groups with a special emphasis on Pontryaginvan Kampen's duality theorem for locally compact abelian groups. We give a completely self-contained elementary proof of the theorem.
(5932 views)
Book cover: Topological Groups: Yesterday, Today, TomorrowTopological Groups: Yesterday, Today, Tomorrow
by - MDPI AG
The aim of this book is to describe significant topics in topological group theory in the early 21st century as well as providing some guidance to the future directions topological group theory might take by including some interesting open questions.
(1768 views)
Book cover: sclscl
by - Mathematical Society of Japan
This is a comprehensive introduction to the theory of stable commutator length, an important subfield of quantitative topology, with substantial connections to 2-manifolds, dynamics, geometric group theory, bounded cohomology, symplectic topology.
(5401 views)
Book cover: A Topology PrimerA Topology Primer
by - Technische Universit├Ąt Kaiserslautern
The purpose of this text is to make familiar with the basics of topology, to give a concise introduction to homotopy, and to make students familiar with homology. Readers are expected to have knowledge of analysis and linear algebra.
(7732 views)