Equivariant Stable Homotopy Theory
by G. Jr. Lewis, J. P. May, M. Steinberger, J. E. McClure
Publisher: Springer 1986
ISBN/ASIN: 3540168206
ISBN-13: 9783540168201
Number of pages: 538
Description:
Our primary purpose in this volume is to establish the foundations of equivariant stable homotopy theory. To this end, we shall construct a stable homotopy category of G-spectra enjoying all of the good properties one might reasonably expect, where G is a compact Lie group. We shall use this category to study equivariant duality, equivariant transfer, the Burnside ring, and related topics in equivariant homology and cohomology theory.
Download or read it online for free here:
Download link
(30MB, PDF)
Similar books

by Daniel Dugger - University of Oregon
This is an expository paper on homotopy colimits and homotopy limits. These are constructions which should arguably be in the toolkit of every modern algebraic topologist. Many proofs are avoided, or perhaps just sketched.
(10592 views)

by F. R. Cohen, T. J. Lada, P. J. May - Springer
A thorough treatment of homology operations and of their application to the calculation of the homologies of various spaces. The book studies an up to homotopy notion of an algebra over a monad and its role in the theory of iterated loop spaces.
(10862 views)

by Dikran Dikranjan - UCM
These notes provide a brief introduction to topological groups with a special emphasis on Pontryaginvan Kampen's duality theorem for locally compact abelian groups. We give a completely self-contained elementary proof of the theorem.
(11000 views)

by Peter Petersen - UCLA
These notes are a supplement to a first year graduate course in manifold theory. These are the topics covered: Manifolds (Smooth Manifolds, Projective Space, Matrix Spaces); Basic Tensor Analysis; Basic Cohomology Theory; Characteristic Classes.
(10212 views)