Logo

Equivariant Stable Homotopy Theory

Large book cover: Equivariant Stable Homotopy Theory

Equivariant Stable Homotopy Theory
by

Publisher: Springer
ISBN/ASIN: 3540168206
ISBN-13: 9783540168201
Number of pages: 538

Description:
Our primary purpose in this volume is to establish the foundations of equivariant stable homotopy theory. To this end, we shall construct a stable homotopy category of G-spectra enjoying all of the good properties one might reasonably expect, where G is a compact Lie group. We shall use this category to study equivariant duality, equivariant transfer, the Burnside ring, and related topics in equivariant homology and cohomology theory.

Home page url

Download or read it online for free here:
Download link
(30MB, PDF)

Similar books

Book cover: The Adams-Novikov Spectral Sequence and the Homotopy Groups of SpheresThe Adams-Novikov Spectral Sequence and the Homotopy Groups of Spheres
by - Northwestern University
Contents: The Adams spectral sequence; Classical calculations; The Adams-Novikov Spectral Sequence; Complex oriented homology theories; The height filtration; The chromatic decomposition; Change of rings; The Morava stabilizer group.
(7205 views)
Book cover: Notes on the course Algebraic TopologyNotes on the course Algebraic Topology
by - University of Oregon
Contents: Important examples of topological spaces; Constructions; Homotopy and homotopy equivalence; CW-complexes and homotopy; Fundamental group; Covering spaces; Higher homotopy groups; Fiber bundles; Suspension Theorem and Whitehead product; etc.
(4972 views)
Book cover: Topology IllustratedTopology Illustrated
by - Intelligent Perception
The text follows the content of a fairly typical, two-semester, first course in topology. Some of the topics are: the shape of the universe, configuration spaces, digital image analysis, data analysis, social choice, and, of course, calculus.
(2764 views)
Book cover: Polynomials and the Steenrod AlgebraPolynomials and the Steenrod Algebra
by - University of Manchester
This book investigates the Steenrod algebra A2 over the field of two elements F2 in a purely algebraic context by its action on the polynomial algebra P(n) in n variables over F2. The reader is expected to have a basic knowledge of algebra.
(5232 views)