Logo

Equivariant Stable Homotopy Theory

Large book cover: Equivariant Stable Homotopy Theory

Equivariant Stable Homotopy Theory
by

Publisher: Springer
ISBN/ASIN: 3540168206
ISBN-13: 9783540168201
Number of pages: 538

Description:
Our primary purpose in this volume is to establish the foundations of equivariant stable homotopy theory. To this end, we shall construct a stable homotopy category of G-spectra enjoying all of the good properties one might reasonably expect, where G is a compact Lie group. We shall use this category to study equivariant duality, equivariant transfer, the Burnside ring, and related topics in equivariant homology and cohomology theory.

Home page url

Download or read it online for free here:
Download link
(30MB, PDF)

Similar books

Book cover: Topology of Stratified SpacesTopology of Stratified Spaces
by - Cambridge University Press
This book concerns the study of singular spaces using techniques of geometry and topology and interactions among them. The authors cover intersection homology, L2 cohomology and differential operators, the topology of algebraic varieties, etc.
(8891 views)
Book cover: The Adams-Novikov Spectral Sequence and the Homotopy Groups of SpheresThe Adams-Novikov Spectral Sequence and the Homotopy Groups of Spheres
by - Northwestern University
Contents: The Adams spectral sequence; Classical calculations; The Adams-Novikov Spectral Sequence; Complex oriented homology theories; The height filtration; The chromatic decomposition; Change of rings; The Morava stabilizer group.
(11830 views)
Book cover: The Homology of Iterated Loop SpacesThe Homology of Iterated Loop Spaces
by - Springer
A thorough treatment of homology operations and of their application to the calculation of the homologies of various spaces. The book studies an up to homotopy notion of an algebra over a monad and its role in the theory of iterated loop spaces.
(10278 views)
Book cover: Elementary TopologyElementary Topology
by - American Mathematical Society
This textbook on elementary topology contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment centered at the notions of fundamental group and covering space.
(16801 views)