Logo

An Introduction to Riemannian Geometry

Small book cover: An Introduction to Riemannian Geometry

An Introduction to Riemannian Geometry
by

Publisher: Lund University
Number of pages: 106

Description:
The main purpose of these lecture notes is to introduce the beautiful theory of Riemannian Geometry, a still very active area of mathematical research. This is a subject with no lack of interesting examples. They are indeed the key to a good understanding of it and will therefore play a major role throughout this work. Of special interest are the classical Lie groups allowing concrete calculations of many of the abstract notions on the menu.

Home page url

Download or read it online for free here:
Download link
(580KB, PDF)

Similar books

Book cover: Riemannian Submanifolds: A SurveyRiemannian Submanifolds: A Survey
by - arXiv
Submanifold theory is a very active vast research field which plays an important role in the development of modern differential geometry. In this book, the author provides a broad review of Riemannian submanifolds in differential geometry.
(7646 views)
Book cover: Riemann Surfaces, Dynamics and GeometryRiemann Surfaces, Dynamics and Geometry
by - Harvard University
This course will concern the interaction between: hyperbolic geometry in dimensions 2 and 3, the dynamics of iterated rational maps, and the theory of Riemann surfaces and their deformations. Intended for advanced graduate students.
(15127 views)
Book cover: Lectures notes on compact Riemann surfacesLectures notes on compact Riemann surfaces
by - arXiv.org
An introduction to the geometry of compact Riemann surfaces. Contents: Riemann surfaces; Functions and forms on Riemann surfaces; Abel map, Jacobian and Theta function; Riemann-Roch; Moduli spaces; Eigenvector bundles and solutions of Lax equations.
(5887 views)
Book cover: Holonomy Groups in Riemannian GeometryHolonomy Groups in Riemannian Geometry
by - arXiv
The holonomy group is one of the fundamental analytical objects that one can define on a Riemannian manfold. These notes provide a first introduction to the main general ideas on the study of the holonomy groups of a Riemannian manifold.
(8823 views)