**Riemannian Geometry**

by Ilkka Holopainen, Tuomas Sahlsten

2013**Number of pages**: 102

**Description**:

Based on the lecture notes on differential geometry. From the table of contents: Differentiable manifolds, a brief review; Riemannian metrics; Connections; Geodesics; Curvature; Jacobi fields; Curvature and topology; Comparison geometry; The sphere theorem.

Download or read it online for free here:

**Download link**

(1.3MB, PDF)

## Similar books

**Lectures notes on compact Riemann surfaces**

by

**Bertrand Eynard**-

**arXiv.org**

An introduction to the geometry of compact Riemann surfaces. Contents: Riemann surfaces; Functions and forms on Riemann surfaces; Abel map, Jacobian and Theta function; Riemann-Roch; Moduli spaces; Eigenvector bundles and solutions of Lax equations.

(

**863**views)

**Riemannian Geometry: Definitions, Pictures, and Results**

by

**Adam Marsh**-

**arXiv**

A pedagogical but concise overview of Riemannian geometry is provided in the context of usage in physics. The emphasis is on defining and visualizing concepts and relationships between them, as well as listing common confusions and relevant theorems.

(

**2153**views)

**Riemannian Submanifolds: A Survey**

by

**Bang-Yen Chen**-

**arXiv**

Submanifold theory is a very active vast research field which plays an important role in the development of modern differential geometry. In this book, the author provides a broad review of Riemannian submanifolds in differential geometry.

(

**3229**views)

**Riemannian Geometry**

by

**Richard L. Bishop**-

**arXiv**

These notes on Riemannian geometry use the bases bundle and frame bundle, as in Geometry of Manifolds, to express the geometric structures. It starts with the definition of Riemannian and semi-Riemannian structures on manifolds.

(

**3930**views)