**Riemannian Geometry**

by Ilkka Holopainen, Tuomas Sahlsten

2013**Number of pages**: 102

**Description**:

Based on the lecture notes on differential geometry. From the table of contents: Differentiable manifolds, a brief review; Riemannian metrics; Connections; Geodesics; Curvature; Jacobi fields; Curvature and topology; Comparison geometry; The sphere theorem.

Download or read it online for free here:

**Download link**

(1.3MB, PDF)

## Similar books

**Lectures notes on compact Riemann surfaces**

by

**Bertrand Eynard**-

**arXiv.org**

An introduction to the geometry of compact Riemann surfaces. Contents: Riemann surfaces; Functions and forms on Riemann surfaces; Abel map, Jacobian and Theta function; Riemann-Roch; Moduli spaces; Eigenvector bundles and solutions of Lax equations.

(

**1043**views)

**Riemannian Submanifolds: A Survey**

by

**Bang-Yen Chen**-

**arXiv**

Submanifold theory is a very active vast research field which plays an important role in the development of modern differential geometry. In this book, the author provides a broad review of Riemannian submanifolds in differential geometry.

(

**3345**views)

**A Sampler of Riemann-Finsler Geometry**

by

**D. Bao, R. Bryant, S. Chern, Z. Shen**-

**Cambridge University Press**

Finsler geometry generalizes Riemannian geometry in the same sense that Banach spaces generalize Hilbert spaces. The contributors consider issues related to volume, geodesics, curvature, complex differential geometry, and parametrized jet bundles.

(

**9155**views)

**A Panoramic View of Riemannian Geometry**

by

**Marcel Berger**-

**Springer**

In this monumental work, Marcel Berger manages to survey large parts of present day Riemannian geometry. The book offers a great opportunity to get a first impression of some part of Riemannian geometry, together with hints for further reading.

(

**7348**views)