**Dynamics, Ergodic Theory, and Geometry**

by Boris Hasselblatt

**Publisher**: Cambridge University Press 2007**ISBN/ASIN**: 0521875412**ISBN-13**: 9780521875417**Number of pages**: 334

**Description**:

This volume contains surveys and research articles by leading experts in several areas of dynamical systems that have recently experienced substantial progress. Some of the major surveys focus on symplectic geometry; smooth rigidity; hyperbolic, parabolic, and symbolic dynamics; and ergodic theory. Students and researchers in dynamical systems, geometry, and related areas will find this a fascinating look at the state of the art.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Ergodic Optimization, Zero Temperature Limits and the Max-plus Algebra**

by

**A. T. Baraviera, R. Leplaideur, A. O. Lopes**-

**arXiv**

We review some basic notions in ergodic theory and thermodynamic formalism, as well as introductory results in the context of max-plus algebra, in order to exhibit some properties of equilibrium measures when temperature goes to zero.

(

**3898**views)

**Mathematical Principals of Dynamic Systems and the Foundations of Quantum Physics**

by

**Eric Tesse**-

**arXiv**

This article will take up the question of what underlies the quantum formalism, whether it can be derived from simpler mathematical structures, and if so, what physical properties a system must possess in order for the formalism to hold.

(

**7036**views)

**Extremes and Recurrence in Dynamical Systems**

by

**Valerio Lucarini, et al.**-

**arXiv**

This book provides a comprehensive introduction for the study of extreme events in the context of dynamical systems. It provides an overview of the area, underlining its relevance for mathematics, natural sciences, engineering, and social sciences.

(

**2107**views)

**Dynamical Systems: Analytical and Computational Techniques**

by

**Mahmut Reyhanoglu**-

**InTech**

There has been a considerable progress made during the recent past on mathematical techniques for studying dynamical systems. This progress is due to our increasing ability to mathematically model physical processes and to analyze and solve them.

(

**2478**views)