Logo

Mathematical Analysis II by Elias Zakon

Small book cover: Mathematical Analysis II

Mathematical Analysis II
by

Publisher: The TrilliaGroup
ISBN/ASIN: 1931705038
Number of pages: 436

Description:
This final text in the Zakon Series on Mathematics Analysis follows the release of the author's Basic Concepts of Mathematics and Mathematical Analysis I and completes the material on Real Analysis that is the foundation for later courses in functional analysis, harmonic analysis, probability theory, etc. This text is appropriate for any second course in real analysis or mathematical analysis, whether at the undergraduate or graduate level.

Home page url

Download or read it online for free here:
Download link
(2.5MB, PDF)

Similar books

Book cover: Fundamentals of AnalysisFundamentals of Analysis
by - Macquarie University
Set of notes suitable for an introduction to the basic ideas in analysis: the number system, sequences and limits, series, functions and continuity, differentiation, the Riemann integral, further treatment of limits, and uniform convergence.
(12936 views)
Book cover: Real Analysis for Graduate Students: Measure and Integration TheoryReal Analysis for Graduate Students: Measure and Integration Theory
by - CreateSpace
Nearly every Ph.D. student in mathematics needs to take a preliminary or qualifying examination in real analysis. This book provides the necessary tools to pass such an examination. The author presents the material in as clear a fashion as possible.
(9394 views)
Book cover: An Introduction to Real AnalysisAn Introduction to Real Analysis
by - University of California Davis
These are some notes on introductory real analysis. They cover the properties of the real numbers, sequences and series of real numbers, limits of functions, continuity, differentiability, sequences and series of functions, and Riemann integration.
(2993 views)
Book cover: Introduction to Lebesgue IntegrationIntroduction to Lebesgue Integration
by - Macquarie University
An introduction to some of the basic ideas in Lebesgue integration with the minimal use of measure theory. Contents: the real numbers and countability, the Riemann integral, point sets, the Lebesgue integral, monotone convergence theorem, etc.
(11729 views)