**Mathematical Analysis II**

by Elias Zakon

**Publisher**: The TrilliaGroup 2009**ISBN/ASIN**: 1931705038**Number of pages**: 436

**Description**:

This final text in the Zakon Series on Mathematics Analysis follows the release of the author's Basic Concepts of Mathematics and Mathematical Analysis I and completes the material on Real Analysis that is the foundation for later courses in functional analysis, harmonic analysis, probability theory, etc. This text is appropriate for any second course in real analysis or mathematical analysis, whether at the undergraduate or graduate level.

Download or read it online for free here:

**Download link**

(2.5MB, PDF)

## Similar books

**Real Analysis**

by

**A. M. Bruckner, J. B. Bruckner, B. S. Thomson**-

**Prentice Hall**

This book provides an introductory chapter containing background material as well as a mini-overview of much of the course, making the book accessible to readers with varied backgrounds. It uses a wealth of examples to illustrate important concepts.

(

**14085**views)

**Introduction to Mathematical Analysis**

by

**B. Lafferriere, G. Lafferriere, N. Mau Nam**-

**Portland State University Library**

We provide students with a strong foundation in mathematical analysis. Students should be familiar with most of the concepts presented here after completing the calculus sequence. However, these concepts will be reinforced through rigorous proofs.

(

**5306**views)

**Foundations of Analysis**

by

**Joseph L. Taylor**

The goal is to develop in students the mathematical maturity they will need when they move on to senior level mathematics courses, and to present a rigorous development of the calculus, beginning with the properties of the real number system.

(

**3293**views)

**Fundamentals of Analysis**

by

**W W L Chen**-

**Macquarie University**

Set of notes suitable for an introduction to the basic ideas in analysis: the number system, sequences and limits, series, functions and continuity, differentiation, the Riemann integral, further treatment of limits, and uniform convergence.

(

**12545**views)