Mathematical Analysis II by Elias Zakon

Small book cover: Mathematical Analysis II

Mathematical Analysis II

Publisher: The TrilliaGroup
ISBN/ASIN: 1931705038
Number of pages: 436

This final text in the Zakon Series on Mathematics Analysis follows the release of the author's Basic Concepts of Mathematics and Mathematical Analysis I and completes the material on Real Analysis that is the foundation for later courses in functional analysis, harmonic analysis, probability theory, etc. This text is appropriate for any second course in real analysis or mathematical analysis, whether at the undergraduate or graduate level.

Home page url

Download or read it online for free here:
Download link
(2.5MB, PDF)

Similar books

Book cover: Real Variables: With Basic Metric Space TopologyReal Variables: With Basic Metric Space Topology
by - Institute of Electrical & Electronics Engineering
A text for a first course in real variables for students of engineering, physics, and economics, who need to know real analysis in order to cope with the professional literature. The subject matter is fundamental for more advanced mathematical work.
Book cover: Irrational Numbers and Their Representation by Sequences and SeriesIrrational Numbers and Their Representation by Sequences and Series
by - J. Wiley & sons
This book is intended to explain the nature of irrational numbers, and those parts of Algebra which depend on the theory of limits. We have endeavored to show how the fundamental operations are to be performed in the case of irrational numbers.
Book cover: The Foundations of AnalysisThe Foundations of Analysis
by - arXiv
This is a detailed introduction to the real number system from a categorical perspective. We begin with the categorical definition of the natural numbers, review the Eudoxus theory of ratios, and then define the positive real numbers categorically.
Book cover: Lectures on Lipschitz AnalysisLectures on Lipschitz Analysis
In these lectures, we concentrate on the theory of Lipschitz functions in Euclidean spaces. From the table of contents: Introduction; Extension; Differentiability; Sobolev spaces; Whitney flat forms; Locally standard Lipschitz structures.