**Comparison Geometry**

by Karsten Grove, Peter Petersen

**Publisher**: Cambridge University Press 1997**ISBN/ASIN**: 052108945X**ISBN-13**: 9780521089456**Number of pages**: 262

**Description**:

Comparison Geometry asks: What can we say about a Riemannian manifold if we know a bound for its curvature, and perhaps something about its topology? This volume is an up-to-date panorama of Comparison Geometry, featuring surveys and new research. Surveys present classical and recent results, and often include complete proofs, in some cases involving a new and unified approach. The historical evolution of the subject is summarized in charts and tables of examples.

Download or read it online for free here:

**Download link**

(multiple PDF,PS files)

## Similar books

**Lectures on Calabi-Yau and Special Lagrangian Geometry**

by

**Dominic Joyce**-

**arXiv**

An introduction to Calabi-Yau manifolds and special Lagrangian submanifolds from the differential geometric point of view, followed by recent results on singularities of special Lagrangian submanifolds, and their application to the SYZ Conjecture.

(

**6820**views)

**Exterior Differential Systems**

by

**Robert L. Bryant, et al.**-

**MSRI**

An exterior differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. This book gives a treatment of exterior differential systems. It includes both the theory and applications.

(

**1106**views)

**Lectures on Exterior Differential Systems**

by

**M. Kuranishi**-

**Tata Institute of Fundamental Research**

Contents: Parametrization of sets of integral submanifolds (Regular linear maps, Germs of submanifolds of a manifold); Exterior differential systems (Differential systems with independent variables); Prolongation of Exterior Differential Systems.

(

**6264**views)

**Cusps of Gauss Mappings**

by

**Thomas Banchoff, Terence Gaffney, Clint McCrory**-

**Pitman Advanced Pub. Program**

Gauss mappings of plane curves, Gauss mappings of surfaces, characterizations of Gaussian cusps, singularities of families of mappings, projections to lines, focal and parallel surfaces, projections to planes, singularities and extrinsic geometry.

(

**9759**views)