Logo

Comparison Geometry by Karsten Grove, Peter Petersen

Large book cover: Comparison Geometry

Comparison Geometry
by

Publisher: Cambridge University Press
ISBN/ASIN: 052108945X
ISBN-13: 9780521089456
Number of pages: 262

Description:
Comparison Geometry asks: What can we say about a Riemannian manifold if we know a bound for its curvature, and perhaps something about its topology? This volume is an up-to-date panorama of Comparison Geometry, featuring surveys and new research. Surveys present classical and recent results, and often include complete proofs, in some cases involving a new and unified approach. The historical evolution of the subject is summarized in charts and tables of examples.

Home page url

Download or read it online for free here:
Download link
(multiple PDF,PS files)

Similar books

Book cover: An introductory course in differential geometry and the Atiyah-Singer index theoremAn introductory course in differential geometry and the Atiyah-Singer index theorem
by - Binghamton University
This is a lecture-based class on the Atiyah-Singer index theorem, proved in the 60's by Sir Michael Atiyah and Isadore Singer. Their work on this theorem lead to a joint Abel prize in 2004. Requirements: Knowledge of topology and manifolds.
(6695 views)
Book cover: Geometric Wave EquationsGeometric Wave Equations
by - arXiv
We discuss the solution theory of geometric wave equations as they arise in Lorentzian geometry: for a normally hyperbolic differential operator the existence and uniqueness properties of Green functions and Green operators is discussed.
(4998 views)
Book cover: Noncompact Harmonic ManifoldsNoncompact Harmonic Manifolds
by - arXiv
We provide a survey on recent results on noncompact simply connected harmonic manifolds, and we also prove many new results, both for general noncompact harmonic manifolds and for noncompact harmonic manifolds with purely exponential volume growth.
(3172 views)
Book cover: Probability, Geometry and Integrable SystemsProbability, Geometry and Integrable Systems
by - Cambridge University Press
The three main themes of this book are probability theory, differential geometry, and the theory of integrable systems. The papers included here demonstrate a wide variety of techniques that have been developed to solve various mathematical problems.
(9962 views)