**Comparison Geometry**

by Karsten Grove, Peter Petersen

**Publisher**: Cambridge University Press 1997**ISBN/ASIN**: 052108945X**ISBN-13**: 9780521089456**Number of pages**: 262

**Description**:

Comparison Geometry asks: What can we say about a Riemannian manifold if we know a bound for its curvature, and perhaps something about its topology? This volume is an up-to-date panorama of Comparison Geometry, featuring surveys and new research. Surveys present classical and recent results, and often include complete proofs, in some cases involving a new and unified approach. The historical evolution of the subject is summarized in charts and tables of examples.

Download or read it online for free here:

**Download link**

(multiple PDF,PS files)

## Similar books

**Global Theory Of Minimal Surfaces**

by

**David Hoffman**-

**American Mathematical Society**

The wide variety of topics covered make this volume suitable for graduate students and researchers interested in differential geometry. The subjects covered include minimal and constant-mean-curvature submanifolds, Lagrangian geometry, and more.

(

**7312**views)

**Projective Differential Geometry Old and New**

by

**V. Ovsienko, S. Tabachnikov**-

**Cambridge University Press**

This book provides a route for graduate students and researchers to contemplate the frontiers of contemporary research in projective geometry. The authors include exercises and historical comments relating the basic ideas to a broader context.

(

**13106**views)

**Lectures on Minimal Surface Theory**

by

**Brian White**-

**arXiv**

The goal was to give beginning graduate students an introduction to some of the most important basic facts and ideas in minimal surface theory. Prerequisites: the reader should know basic complex analysis and elementary differential geometry.

(

**4633**views)

**Tight and Taut Submanifolds**

by

**Thomas E. Cecil, Shiing-shen Chern**-

**Cambridge University Press**

Tight and taut submanifolds form an important class of manifolds with special curvature properties, one that has been studied intensively by differential geometers since the 1950's. This book contains six articles by leading experts in the field.

(

**7541**views)