Logo

Introduction to Lie Groups, Adjoint Action and Some Generalizations

Small book cover: Introduction to Lie Groups, Adjoint Action and Some Generalizations

Introduction to Lie Groups, Adjoint Action and Some Generalizations
by

Publisher: arXiv
Number of pages: 129

Description:
The main purpose of these lecture notes is to provide a concise introduction to Lie groups, Lie algebras, and isometric and adjoint actions, aiming mostly at advanced undergraduate and graduate students. A special focus is given to maximal tori and roots of compact Lie groups, exploring its connection with isoparametric submanifolds and polar actions.

Home page url

Download or read it online for free here:
Download link
(1MB, PDF)

Similar books

Book cover: Notes on Classical GroupsNotes on Classical Groups
by - Queen Mary and Westfield College
Notes for an M.Sc. course: Fields and vector spaces; Linear and projective groups; Polarities and forms; Symplectic groups; Unitary groups; Orthogonal groups; Klein correspondence and triality; A short bibliography on classical groups.
(10235 views)
Book cover: Lectures on Discrete Subgroups of Lie GroupsLectures on Discrete Subgroups of Lie Groups
by - Tata Institute of Fundamental Research
Contents: Preliminaries; Complexification of a real Linear Lie Group; Intrinsic characterization of K* and E; R-regular elements; Discrete Subgroups; Some Ergodic Properties of Discrete Subgroups; Real Forms of Semi-simple Algebraic Groups; etc.
(7179 views)
Book cover: An Introduction to Lie Group IntegratorsAn Introduction to Lie Group Integrators
by - arXiv
The authors give a short and elementary introduction to Lie group methods. A selection of applications of Lie group integrators are discussed. Finally, a family of symplectic integrators on cotangent bundles of Lie groups is presented ...
(3578 views)
Book cover: Continuous Groups Of TransformationsContinuous Groups Of Transformations
by - Princeton University Press
'Continuous Groups Of Transformations' sets forth the general theory of Lie and his contemporaries and the results of recent investigations with the aid of the methods of the tensor calculus and concepts of the new differential geometry.
(4507 views)