Logo

Introduction to Lie Groups, Adjoint Action and Some Generalizations

Small book cover: Introduction to Lie Groups, Adjoint Action and Some Generalizations

Introduction to Lie Groups, Adjoint Action and Some Generalizations
by

Publisher: arXiv
Number of pages: 129

Description:
The main purpose of these lecture notes is to provide a concise introduction to Lie groups, Lie algebras, and isometric and adjoint actions, aiming mostly at advanced undergraduate and graduate students. A special focus is given to maximal tori and roots of compact Lie groups, exploring its connection with isoparametric submanifolds and polar actions.

Home page url

Download or read it online for free here:
Download link
(1MB, PDF)

Similar books

Book cover: Lectures on Lie Groups and Representations of Locally Compact GroupsLectures on Lie Groups and Representations of Locally Compact Groups
by - Tata Institute of Fundamental Research
We consider some heterogeneous topics relating to Lie groups and the general theory of representations of locally compact groups. We have rigidly adhered to the analytic approach in establishing the relations between Lie groups and Lie algebras.
(7017 views)
Book cover: Lie Groups in PhysicsLie Groups in Physics
by - Utrecht University
Contents: Quantum mechanics and rotation invariance; The group of rotations in three dimensions; More about representations; Ladder operators; The group SU(2); Spin and angular distributions; Isospin; The Hydrogen Atom; The group SU(3); etc.
(9780 views)
Book cover: Roots of a Compact Lie GroupRoots of a Compact Lie Group
by - arXiv
This expository article introduces the topic of roots in a compact Lie group. Compared to the many other treatments of this standard topic, I intended for mine to be relatively elementary, example-driven, and free of unnecessary abstractions.
(3677 views)
Book cover: An Introduction to the Lie Theory of One-Parameter GroupsAn Introduction to the Lie Theory of One-Parameter Groups
by - D.C. Heath & co
The object of this book is to present in an elementary manner, in English, an introduction to Lie s theory of one-parameter groups, with special reference to its application to the solution of differential equations invariant under such groups.
(1192 views)