Notes on Differential Geometry and Lie Groups

Small book cover: Notes on Differential Geometry and Lie Groups

Notes on Differential Geometry and Lie Groups

Publisher: University of Pennsylvania

Contents: Introduction to Manifolds and Lie Groups; Review of Groups and Group Actions; Manifolds; Construction of Manifolds From Gluing Data; Lie Groups, Lie Algebra, Exponential Map; The Derivative of exp and Dynkin's Formula; Bundles, Riemannian Metrics, Homogeneous Spaces; Differential Forms; Integration on Manifolds; Distributions and the Frobenius Theorem; Connections and Curvature in Vector Bundles; Geodesics on Riemannian Manifolds; Curvature in Riemannian Manifolds; etc.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: An Introduction to Lie Group IntegratorsAn Introduction to Lie Group Integrators
by - arXiv
The authors give a short and elementary introduction to Lie group methods. A selection of applications of Lie group integrators are discussed. Finally, a family of symplectic integrators on cotangent bundles of Lie groups is presented ...
Book cover: Introduction to Lie Groups and Lie AlgebrasIntroduction to Lie Groups and Lie Algebras
by - SUNY at Stony Brook
The book covers the basic contemporary theory of Lie groups and Lie algebras. This classic graduate text focuses on the study of semisimple Lie algebras, developing the necessary theory along the way. Written in an informal style.
Book cover: Lie Groups in PhysicsLie Groups in Physics
by - Utrecht University
Contents: Quantum mechanics and rotation invariance; The group of rotations in three dimensions; More about representations; Ladder operators; The group SU(2); Spin and angular distributions; Isospin; The Hydrogen Atom; The group SU(3); etc.
Book cover: Introductory Treatise On Lie's Theory Of Finite Continuous Transformation GroupsIntroductory Treatise On Lie's Theory Of Finite Continuous Transformation Groups
by - Oxford Clarendon Press
In this treatise an attempt is made to give, in as elementary a form as possible, the main outlines of Lie's theory of Continuous Groups. Even those familiar with the theory may find something new in the form in which the theory is here presented.