**Notes on Differential Geometry and Lie Groups**

by Jean Gallier

**Publisher**: University of Pennsylvania 2010

**Description**:

Contents: Introduction to Manifolds and Lie Groups; Review of Groups and Group Actions; Manifolds; Construction of Manifolds From Gluing Data; Lie Groups, Lie Algebra, Exponential Map; The Derivative of exp and Dynkin's Formula; Bundles, Riemannian Metrics, Homogeneous Spaces; Differential Forms; Integration on Manifolds; Distributions and the Frobenius Theorem; Connections and Curvature in Vector Bundles; Geodesics on Riemannian Manifolds; Curvature in Riemannian Manifolds; etc.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Lie Groups, Physics, and Geometry**

by

**Robert Gilmore**-

**Drexel University**

The book emphasizes the most useful aspects of Lie groups, in a way that is easy for students to acquire and to assimilate. It includes a chapter dedicated to the applications of Lie group theory to solving differential equations.

(

**6712**views)

**Introductory Treatise On Lie's Theory Of Finite Continuous Transformation Groups**

by

**John Edward Campbell**-

**Oxford Clarendon Press**

In this treatise an attempt is made to give, in as elementary a form as possible, the main outlines of Lie's theory of Continuous Groups. Even those familiar with the theory may find something new in the form in which the theory is here presented.

(

**3013**views)

**An Introduction to the Lie Theory of One-Parameter Groups**

by

**Abraham Cohen**-

**D.C. Heath & co**

The object of this book is to present in an elementary manner, in English, an introduction to Lie s theory of one-parameter groups, with special reference to its application to the solution of differential equations invariant under such groups.

(

**919**views)

**Lie groups and Lie algebras**

by

**N. Reshetikhin, V. Serganova, R. Borcherds**-

**UC Berkeley**

From the table of contents: Tangent Lie algebras to Lie groups; Simply Connected Lie Groups; Hopf Algebras; PBW Theorem and Deformations; Lie algebra cohomology; Engel's Theorem and Lie's Theorem; Cartan Criterion, Whitehead and Weyl Theorems; etc.

(

**7166**views)