**An Introduction to the Smarandache Function**

by Charles Ashbacher

**Publisher**: Erhus Univ Pr 1995**ISBN/ASIN**: 1879585499**ISBN-13**: 9781879585492**Number of pages**: 62

**Description**:

As one of the oldest mathematical disciplines, the roots of number theory extend back into antiquity. Problems are often easy to state, but extremely difficult to solve, which is the origin of their charm. All mathematicians have a soft spot in their hearts for the "purity" of the integers. In the 1970's a Rumanian mathematician Florentin Smarandache created a new function in number theory.
The consequences of its simple definition encompass many areas of mathematics. The purpose of this text is to examine some of those consequences, giving the reader a taste for this unexplored territory.

Download or read it online for free here:

**Download link**

(1.6MB, PDF)

## Similar books

**Essays on the Theory of Numbers**

by

**Richard Dedekind**-

**The Open Court Publishing**

This is a book combining two essays: 'Continuity and irrational numbers' - Dedekind's way of defining the real numbers from rational numbers; and 'The nature and meaning of numbers' where Dedekind offers a precise explication of the natural numbers.

(

**9283**views)

**Predicative Arithmetic**

by

**Edward Nelson**-

**Princeton Univ Pr**

The book based on lecture notes of a course given at Princeton University in 1980. From the contents: the impredicativity of induction, the axioms of arithmetic, order, induction by relativization, the bounded least number principle, and more.

(

**13174**views)

**Collections of Problems on Smarandache Notions**

by

**Charles Ashbacher**-

**Erhus University Press**

This text deals with some advanced consequences of the Smarandache function. The reading of this book is a form of mindjoining, where the author tries to create the opportunity for a shared experience of an adventure.

(

**13108**views)

**Introduction to Shimura Varieties**

by

**J.S. Milne**

This is an introduction to the theory of Shimura varieties, or, in other words, to the arithmetic theory of automorphic functions and holomorphic automorphic forms. Because of their brevity, many proofs have been omitted or only sketched.

(

**5385**views)