**Modular Functions and Modular Forms**

by J. S. Milne

2009**Number of pages**: 129

**Description**:

This is an introduction to the arithmetic theory of modular functions and modular forms, with a greater emphasis on the geometry than most accounts. Prerequisites are the algebra and complex analysis usually covered in advanced undergraduate or first-year graduate courses.

Download or read it online for free here:

**Download link**

(960KB, PDF)

## Similar books

**Lectures on An Introduction to Grothendieck's Theory of the Fundamental Group**

by

**J.P. Murre**-

**Tata Institute of Fundamental Research**

The purpose of this text is to give an introduction to Grothendieck's theory of the fundamental group in algebraic geometry with the study of the fundamental group of an algebraic curve over an algebraically closed field of arbitrary characteristic.

(

**9672**views)

**Algebraic geometry and projective differential geometry**

by

**Joseph M. Landsberg**-

**arXiv**

Homogeneous varieties, Topology and consequences Projective differential invariants, Varieties with degenerate Gauss images, Dual varieties, Linear systems of bounded and constant rank, Secant and tangential varieties, and more.

(

**15286**views)

**An Introduction to Semialgebraic Geometry**

by

**Michel Coste**-

**Universite de Rennes**

Semialgebraic geometry is the study of sets of real solutions of systems of polynomial equations and inequalities. These notes present the first results of semialgebraic geometry and related algorithmic issues. Their content is by no means original.

(

**12595**views)

**Homogeneous Spaces and Equivariant Embeddings**

by

**Dmitri A. Timashev**-

**arXiv**

A monograph on homogeneous spaces of algebraic groups and their equivariant embeddings. Some results are supplied with proofs, the other are cited with references to the original papers. The style is intermediate between survey and detailed monograph.

(

**11502**views)