**Abelian Varieties**

by J. S. Milne

2008**Number of pages**: 172

**Description**:

An introduction to both the geometry and the arithmetic of abelian varieties. It includes a discussion of the theorems of Honda and Tate concerning abelian varieties over finite fields and the paper of Faltings in which he proves Mordell's Conjecture.

Download or read it online for free here:

**Download link**

(1.2MB, PDF)

## Similar books

**Lectures on Siegel's Modular Functions**

by

**H. Maass**-

**Tata Institute of Fundamental Research**

Contents: Modular Group of Degree n; Symplectic group of degree n; Reduction Theory of Positive Definite Quadratic Forms; Fundamental Domain of the Modular Group of Degree n; Modular Forms of Degree n; Algebraic dependence of modular forms; etc.

(

**7247**views)

**Current Topics in Complex Algebraic Geometry**

by

**Herbert Clemens, János Kollár**-

**Cambridge University Press**

The 1992/93 year at the Mathematical Sciences Research Institute was devoted to Complex Algebraic Geometry. This volume collects articles that arose from this event, which took place at a time when algebraic geometry was undergoing a major change.

(

**10620**views)

**Introduction to Algebraic Topology and Algebraic Geometry**

by

**U. Bruzzo**

Introduction to algebraic geometry for students with an education in theoretical physics, to help them to master the basic algebraic geometric tools necessary for algebraically integrable systems and the geometry of quantum field and string theory.

(

**7093**views)

**Lectures on Moduli of Curves**

by

**D. Gieseker**-

**Tata Institute of Fundamental Research**

These lecture notes are based on some lectures given in 1980. The object of the lectures was to construct a projective moduli space for stable curves of genus greater than or equal two using Mumford's geometric invariant theory.

(

**5673**views)