Logo

A Treatise on Probability by John Maynard Keynes

Large book cover: A Treatise on Probability

A Treatise on Probability
by

Publisher: Macmillan and co
ISBN/ASIN: 1929148763
Number of pages: 561

Description:
From the table of contents: Fundamental ideas - The Meaning of Probability, The Measurement of Probabilities; Fundamental theorems; Induction and analogy; Some philosophical applications of probability; The foundations of statistical inference, etc.

Home page url

Download or read it online for free here:
Download link
(2.3MB, PDF)

Similar books

Book cover: Probability, Random Processes, and Ergodic PropertiesProbability, Random Processes, and Ergodic Properties
by - Springer
A self-contained treatment of the theory of probability, random processes. It is intended to lay theoretical foundations for measure and integration theory, and to develop the long term time average behavior of measurements made on random processes.
(10380 views)
Book cover: Almost None of the Theory of Stochastic ProcessesAlmost None of the Theory of Stochastic Processes
by - Carnegie Mellon University
Text for a second course in stochastic processes. It is assumed that you have had a first course on stochastic processes, using elementary probability theory. You will study stochastic processes within the framework of measure-theoretic probability.
(8428 views)
Book cover: Probability: Theory and ExamplesProbability: Theory and Examples
by - Cambridge University Press
An introduction to probability theory covering laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It concentrates on the results that are the most useful for applications.
(9631 views)
Book cover: Lectures on Elementary ProbabilityLectures on Elementary Probability
by - University of Arizona
From the table of contents: Combinatorics; Probability Axioms; Discrete Random Variables; The Bernoulli Process; Continuous Random Variables; The Poisson Process; The weak law of large numbers; The central limit theorem; Estimation.
(6037 views)