Logo

The Elements of Non-Euclidean Geometry

Large book cover: The Elements of Non-Euclidean Geometry

The Elements of Non-Euclidean Geometry
by

Publisher: G.Bell & Sons Ltd.
ISBN/ASIN: 0486442225
Number of pages: 158

Description:
Renowned for its lucid yet meticulous exposition, this text follows the development of non-Euclidean geometry from a fundamental analysis of the concept of parallelism to such advanced topics as inversion and transformations. It features the relation between parataxy and parallelism, the absolute measure, the pseudosphere, and Gauss' proof of the defect-area theorem.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Download mirrors:
Mirror 1

Similar books

Book cover: Euclid's Parallel Postulate: Its Nature, Validity and Place in Geometrical SystemsEuclid's Parallel Postulate: Its Nature, Validity and Place in Geometrical Systems
by - Open Court Publishing Co.
The parallel postulate is the only distinctive characteristic of Euclid. To pronounce upon its validity and general philosophical significance without endeavoring to know what Non-Euclideans have done would be an inexcusable blunder ...
(3041 views)
Book cover: Neutral and Non-Euclidean GeometriesNeutral and Non-Euclidean Geometries
by - UNC Charlotte
In this course the students are introduced, or re-introduced, to the method of Mathematical Proof. You will be introduced to new and interesting areas in Geometry, with most of the time spent on the study of Hyperbolic Geometry.
(6495 views)
Book cover: The Elements Of Non-Euclidean GeometryThe Elements Of Non-Euclidean Geometry
by - Oxford At The Clarendon Press
Chapters include: Foundation For Metrical Geometry In A Limited Region; Congruent Transformations; Introduction Of Trigonometric Formulae; Analytic Formulae; Consistency And Significance Of The Axioms; Geometric And Analytic Extension Of Space; etc.
(7608 views)
Book cover: Geometry with an Introduction to Cosmic TopologyGeometry with an Introduction to Cosmic Topology
by
This text develops non-Euclidean geometry and geometry on surfaces at a level appropriate for undergraduate students who completed a multivariable calculus course and are ready to practice habits of thought needed in advanced undergraduate courses.
(1590 views)