**Differential Geometry: Lecture Notes**

by Dmitri Zaitsev

**Publisher**: Trinity College Dublin 2004**Number of pages**: 49

**Description**:

From the table of contents: Chapter 1. Introduction to Smooth Manifolds; Chapter 2. Basic results from Differential Topology; Chapter 3. Tangent spaces and tensor calculus; Tensors and differential forms; Chapter 4. Riemannian geometry.

Download or read it online for free here:

**Download link**

(290KB, PDF)

## Similar books

**Introduction to Differential Geometry and General Relativity**

by

**Stefan Waner**

Smooth manifolds and scalar fields, tangent vectors, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, the Riemann curvature tensor, premises of general relativity.

(

**16278**views)

**Tensor Analysis**

by

**Edward Nelson**-

**Princeton Univ Pr**

The lecture notes for the first part of a one-term course on differential geometry given at Princeton in the spring of 1967. They are an expository account of the formal algebraic aspects of tensor analysis using both modern and classical notations.

(

**12903**views)

**Notes on Differential Geometry**

by

**Noel J. Hicks**-

**Van Nostrand**

A concise introduction to differential geometry. The ten chapters of Hicks' book contain most of the mathematics that has become the standard background for not only differential geometry, but also much of modern theoretical physics and cosmology.

(

**8206**views)

**Differential Geometry in Physics**

by

**Gabriel Lugo**-

**University of North Carolina at Wilmington**

These notes were developed as a supplement to a course on Differential Geometry at the advanced undergraduate level, which the author has taught. This texts has an early introduction to differential forms and their applications to Physics.

(

**12571**views)