**Lectures on Calabi-Yau and Special Lagrangian Geometry**

by Dominic Joyce

**Publisher**: arXiv 2002**Number of pages**: 58

**Description**:

This paper gives a leisurely introduction to Calabi-Yau manifolds and special Lagrangian submanifolds from the differential geometric point of view, followed by a survey of recent results on singularities of special Lagrangian submanifolds, and their application to the SYZ Conjecture.

Download or read it online for free here:

**Download link**

(570KB, PDF)

## Similar books

**Global Theory Of Minimal Surfaces**

by

**David Hoffman**-

**American Mathematical Society**

The wide variety of topics covered make this volume suitable for graduate students and researchers interested in differential geometry. The subjects covered include minimal and constant-mean-curvature submanifolds, Lagrangian geometry, and more.

(

**6398**views)

**Ricci-Hamilton Flow on Surfaces**

by

**Li Ma**-

**Tsinghua University**

Contents: Ricci-Hamilton flow on surfaces; Bartz-Struwe-Ye estimate; Hamilton's another proof on S2; Perelman's W-functional and its applications; Ricci-Hamilton flow on Riemannian manifolds; Maximum principles; Curve shortening flow on manifolds.

(

**5154**views)

**Notes on the Atiyah-Singer Index Theorem**

by

**Liviu I. Nicolaescu**-

**University of Notre Dame**

This is arguably one of the deepest and most beautiful results in modern geometry, and it is surely a must know for any geometer / topologist. It has to do with elliptic partial differential operators on a compact manifold.

(

**5491**views)

**Exterior Differential Systems**

by

**Robert L. Bryant, et al.**-

**MSRI**

An exterior differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. This book gives a treatment of exterior differential systems. It includes both the theory and applications.

(

**1874**views)