**Surveys in Noncommutative Geometry**

by Nigel Higson, John Roe

**Publisher**: American Mathematical Society 2006**ISBN/ASIN**: 0821838466**ISBN-13**: 9780821838464**Number of pages**: 208

**Description**:

The series of expository lectures intended to introduce key topics in noncommutative geometry to mathematicians unfamiliar with the subject. Topics: applications of noncommutative geometry to problems in ordinary geometry and topology, Riemann hypothesis and the possible application of the methods of noncommutative geometry in number theory, residue index theorem of Connes and Moscovici, etc.

Download or read it online for free here:

**Download link**

(1.8MB, PDF)

## Similar books

**Geometric Models for Noncommutative Algebra**

by

**Ana Cannas da Silva, Alan Weinstein**-

**University of California at Berkeley**

Noncommutative geometry is the study of noncommutative algebras as if they were algebras of functions on spaces, like the commutative algebras associated to affine algebraic varieties, differentiable manifolds, topological spaces, and measure spaces.

(

**6217**views)

**An Introduction to Noncommutative Spaces and their Geometry**

by

**Giovanni Landi**-

**arXiv**

These lectures notes are an introduction for physicists to several ideas and applications of noncommutative geometry. The necessary mathematical tools are presented in a way which we feel should be accessible to physicists.

(

**8830**views)

**Noncommutative Geometry**

by

**Alain Connes**-

**Academic Press**

The definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics. Ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics.

(

**9379**views)

**Very Basic Noncommutative Geometry**

by

**Masoud Khalkhali**-

**University of Western Ontario**

Contents: Introduction; Some examples of geometry-algebra correspondence; Noncommutative quotients; Cyclic cohomology; Chern-Connes character; Banach and C*-algebras; Idempotents and finite projective modules; Equivalence of categories.

(

**4335**views)