**Introductory Finite Difference Methods for PDEs**

by D. M. Causon, C. G. Mingham

**Publisher**: BookBoon 2010**ISBN-13**: 9788776816421**Number of pages**: 144

**Description**:

This book presents finite difference methods for solving partial differential equations (PDEs) and also general concepts like stability, boundary conditions etc. The book is intended for undergraduates who know Calculus and introductory programming.

Download or read it online for free here:

**Download link**

(4.2MB, PDF)

## Similar books

**Existence, multiplicity, perturbation, and concentration results for a class of quasi-linear elliptic problems**

by

**Marco Squassina**-

**Electronic Journal of Differential Equations**

A survey of results about existence, multiplicity, perturbation from symmetry and concentration phenomena for a class of quasi-linear elliptic equations coming from functionals of the calculus of variations which turn out to be merely continuous.

(

**5052**views)

**The Place of Partial Differential Equations in Mathematical Physics**

by

**Ganesh Prasad**-

**Patna University**

The reason for my choosing the partial differential equations as the subject for these lectures is my wish to inspire in my audience a love for Mathematics. I give a brief historical account of the application of Mathematics to natural phenomena.

(

**1652**views)

**Introduction to the Numerical Integration of PDEs**

by

**B. Piette**-

**University of Durham**

In these notes, we describe the design of a small C++ program which solves numerically the sine-Gordon equation. The program is build progressively to make it multipurpose and easy to modify to solve any system of partial differential equations.

(

**8116**views)

**Lectures on Elliptic Partial Differential Equations**

by

**J.L. Lions**-

**Tata Institute of Fundamental Research**

In these lectures we study the boundary value problems associated with elliptic equation by using essentially L2 estimates (or abstract analogues of such estimates). We consider only linear problem, and we do not study the Schauder estimates.

(

**5738**views)