**Algebraic Topology**

by Allen Hatcher

**Publisher**: Cambridge University Press 2001**ISBN/ASIN**: 0521795400**ISBN-13**: 9780521795401**Number of pages**: 559

**Description**:

In most major universities one of the three or four basic first-year graduate mathematics courses is algebraic topology. This introductory text is suitable for use in a course on the subject or for self-study, featuring broad coverage and a readable exposition, with many examples and exercises. The four main chapters present the basics: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature is the inclusion of many optional topics not usually part of a first course due to time constraints: Bockstein and transfer homomorphisms, direct and inverse limits, H-spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold-Thom theorem, and Steenrod squares and powers.

Download or read it online for free here:

**Download link**

(3.5MB, PDF)

## Similar books

**A Primer on Homotopy Colimits**

by

**Daniel Dugger**-

**University of Oregon**

This is an expository paper on homotopy colimits and homotopy limits. These are constructions which should arguably be in the toolkit of every modern algebraic topologist. Many proofs are avoided, or perhaps just sketched.

(

**4539**views)

**Prerequisites in Algebraic Topology**

by

**Bjorn Ian Dundas**-

**NTNU**

This is not an introductory textbook in algebraic topology, these notes attempt to give an overview of the parts of algebraic topology, and in particular homotopy theory, which are needed in order to appreciate that side of motivic homotopy theory.

(

**5452**views)

**Homotopy Theories and Model Categories**

by

**W. G. Dwyer, J. Spalinski**-

**University of Notre Dame**

This paper is an introduction to the theory of model categories. The prerequisites needed for understanding this text are some familiarity with CW-complexes, chain complexes, and the basic terminology associated with categories.

(

**4601**views)

**The Classification Theorem for Compact Surfaces**

by

**Jean Gallier, Dianna Xu**

In this book the authors present the technical tools needed for proving rigorously the classification theorem, give a detailed proof using these tools, and also discuss the history of the theorem and its various proofs.

(

**9550**views)