**A Topology Primer**

by Klaus Wirthmüller

**Publisher**: Technische Universität Kaiserslautern 2002**Number of pages**: 197

**Description**:

The purpose of this text is to make familiar with the basics of topology, to give a concise introduction to homotopy, and to make students familiar with homology. Readers are expected to have successfully completed their first year courses in analysis and linear algebra.

Download or read it online for free here:

**Download link**

(3.2MB, PDF)

## Similar books

**Prerequisites in Algebraic Topology**

by

**Bjorn Ian Dundas**-

**NTNU**

This is not an introductory textbook in algebraic topology, these notes attempt to give an overview of the parts of algebraic topology, and in particular homotopy theory, which are needed in order to appreciate that side of motivic homotopy theory.

(

**5749**views)

**Differential Forms and Cohomology: Course**

by

**Peter Saveliev**-

**Intelligent Perception**

Differential forms provide a modern view of calculus. They also give you a start with algebraic topology in the sense that one can extract topological information about a manifold from its space of differential forms. It is called cohomology.

(

**2934**views)

**Equivariant Stable Homotopy Theory**

by

**G. Jr. Lewis, J. P. May, M. Steinberger, J. E. McClure**-

**Springer**

Our purpose is to establish the foundations of equivariant stable homotopy theory. We shall construct a stable homotopy category of G-spectra,and use it to study equivariant duality, equivariant transfer, the Burnside ring, and related topics.

(

**9099**views)

**Algebraic and Geometric Topology**

by

**Andrew Ranicki, Norman Levitt, Frank Quinn**-

**Springer**

The book present original research on a wide range of topics in modern topology: the algebraic K-theory of spaces, the algebraic obstructions to surgery and finiteness, geometric and chain complexes, characteristic classes, and transformation groups.

(

**10477**views)