**Introduction to Topology**

by Alex Kuronya

2010**Number of pages**: 102

**Description**:

Contents: Basic concepts; Constructing topologies; Connectedness; Separation axioms and the Hausdorff property; Compactness and its relatives; Quotient spaces; Homotopy; The fundamental group and some applications; Covering spaces; Classification of covering spaces.

Download or read it online for free here:

**Download link**

(580KB, PDF)

## Similar books

**Homeomorphisms in Analysis**

by

**Casper Goffman, at al.**-

**American Mathematical Society**

This book features the interplay of two main branches of mathematics: topology and real analysis. The text covers Lebesgue measurability, Baire classes of functions, differentiability, the Blumberg theorem, various theorems on Fourier series, etc.

(

**10754**views)

**Notes on Introductory Point-Set Topology**

by

**Allen Hatcher**-

**Cornell University**

These are lecture notes from the first part of an undergraduate course in 2005, covering just the most basic things. From the table of contents: Basic Point-Set Topology; Connectedness; Compactness; Quotient Spaces; Exercises.

(

**4216**views)

**Quick Tour of the Topology of R**

by

**StevenHurder, DaveMarker**-

**University of Illinois at Chicago**

These notes are a supplement for the 'standard undergraduate course' in Analysis. The aim is to present a more general perspective on the incipient ideas of topology encountered when exploring the rigorous theorem-proof approach to Calculus.

(

**5405**views)

**A First Course in Topology: Continuity and Dimension**

by

**John McCleary**-

**American Mathematical Society**

A focused introduction to point-set topology, the fundamental group, and the beginnings of homology theory. The text is intended for advanced undergraduate students. It is suitable for students who have studied real analysis and linear algebra.

(

**12199**views)