Logo

The CRing Project: a collaborative open source textbook on commutative algebra

Small book cover: The CRing Project: a collaborative open source textbook on commutative algebra

The CRing Project: a collaborative open source textbook on commutative algebra
by

Publisher: CRing Project
Number of pages: 493

Description:
The CRing project is an open source textbook on commutative algebra, aiming to comprehensively cover the foundations needed for algebraic geometry at the level of EGA or SGA. It is a work in progress. The present project aims at producing a work suitable for a beginning undergraduate with a background in elementary abstract algebra.

Home page url

Download or read it online for free here:
Download link
(2.8MB, PDF)

Similar books

Book cover: Introduction to Commutative AlgebraIntroduction to Commutative Algebra
by - University of Maryland
Notes for an introductory course on commutative algebra. Algebraic geometry uses commutative algebraic as its 'local machinery'. The goal of these lectures is to study commutative algebra and some topics in algebraic geometry in a parallel manner.
(4720 views)
Book cover: Frobenius Splitting in Commutative AlgebraFrobenius Splitting in Commutative Algebra
by - arXiv
Frobenius splitting has inspired a vast arsenal of techniques in commutative algebra, algebraic geometry, and representation theory. The purpose of these lectures is to give a gentle introduction to Frobenius splitting for beginners.
(1346 views)
Book cover: The Algebraic Theory of Modular SystemsThe Algebraic Theory of Modular Systems
by - Cambridge University Press
Many of the ideas introduced by F.S. Macaulay in this classic book have developed into central concepts in what has become the branch of mathematics known as Commutative Algebra. Today his name is remembered through the term 'Cohen-Macaulay ring'.
(4131 views)
Book cover: Trends in Commutative AlgebraTrends in Commutative Algebra
by - Cambridge University Press
This book focuses on the interaction of commutative algebra with other areas of mathematics, including algebraic geometry, group cohomology and representation theory, and combinatorics, with all necessary background provided.
(6034 views)