Logo

Lectures on Field Theory and Ramification Theory

Small book cover: Lectures on Field Theory and Ramification Theory

Lectures on Field Theory and Ramification Theory
by

Publisher: Indian Institute of Technology, Bombay
Number of pages: 36

Description:
These are the notes of a series of five lectures, aimed at covering the essentials of Field Theory and Ramification Theory as may be needed for local and global class field theory. Included are the two sections on cyclic extensions and abelian extensions.

Home page url

Download or read it online for free here:
Download link
(360KB, PDF)

Similar books

Book cover: Fields and Galois TheoryFields and Galois Theory
by
A concise treatment of Galois theory and the theory of fields, including transcendence degrees and infinite Galois extensions. Contents: Basic definitions and results; Splitting fields; The fundamental theorem of Galois theory; etc.
(12899 views)
Book cover: Generic Polynomials: Constructive Aspects of the Inverse Galois ProblemGeneric Polynomials: Constructive Aspects of the Inverse Galois Problem
by - Cambridge University Press
A clearly written book, which uses exclusively algebraic language (and no cohomology), and which will be useful for every algebraist or number theorist. It is easily accessible and suitable also for first-year graduate students.
(16219 views)
Book cover: Lectures On Galois Cohomology of Classical GroupsLectures On Galois Cohomology of Classical Groups
by - Tata Institute of Fundamental Research
The main result is the Hasse principle for the one-dimensional Galois cohomology of simply connected classical groups over number fields. For most groups, this result is closely related to other types of Hasse principle.
(10369 views)
Book cover: Galois Theory: Lectures Delivered at the University of Notre DameGalois Theory: Lectures Delivered at the University of Notre Dame
by - University of Notre Dame
The book deals with linear algebra, including fields, vector spaces, homogeneous linear equations, and determinants, extension fields, polynomials, algebraic elements, splitting fields, group characters, normal extensions, roots of unity, and more.
(6564 views)