**Lectures on Topics in Mean Periodic Functions and the Two-Radius Theorem**

by J. Delsarte

**Publisher**: Tata Institute of Fundamental Research 1961**ISBN/ASIN**: B0007J92RQ**Number of pages**: 151

**Description**:

Subjects treated: transmutations of singular differential operators of the second order in the real case; new results on the theory of mean periodic functions; proof of the two-radius theorem, which is the converse of Gauss's classical theorem on the spherical mean for harmonic functions.

Download or read it online for free here:

**Download link**

(680KB, PDF)

## Similar books

**An elementary treatise on Fourier's series and spherical, cylindrical, and ellipsoidal harmonics**

by

**William Elwood Byerly**-

**Ginn and company**

From the table of contents: Development in Trigonometric Series; Convergence of Fourier's Series; Solution of Problems in Physics by the Aid of Fourier's Integrals and Fourier's Series; Zonal Harmonics; Spherical Harmonics; Cylindrical Harmonics; ...

(

**10100**views)

**Lectures on Harmonic Analysis**

by

**Thomas Wolff**-

**American Mathematical Society**

An inside look at the techniques used and developed by the author. The book is based on a graduate course on Fourier analysis he taught at Caltech. It demonstrates how harmonic analysis can provide penetrating insights into deep aspects of analysis.

(

**5116**views)

**Notes on Harmonic Analysis**

by

**George Benthien**

Tutorial discussing some of the numerical aspects of practical harmonic analysis. Topics include Historical Background, Fourier Series and Integral Approximations, Convergence Improvement, Differentiation of Fourier Series and Sigma Factors, etc.

(

**5702**views)

**Spherical Harmonics in p Dimensions**

by

**Christopher Frye, Costas J. Efthimiou**-

**arXiv**

The authors prepared this booklet in order to make several useful topics from the theory of special functions, in particular the spherical harmonics and Legendre polynomials for any dimension, available to physics or mathematics undergraduates.

(

**4161**views)