
Hyperbolic Geometry
by J.W. Cannon, W.J. Floyd, R. Kenyon, W.R. Parry
Publisher: MSRI 1997
Number of pages: 57
Description:
These notes are intended as a relatively quick introduction to hyperbolic geometry. They review the wonderful history of non-Euclidean geometry. They give five different analytic models for and several combinatorial approximations to non-Euclidean geometry by means of which the reader can develop an intuition for the behavior of this geometry.
Download or read it online for free here:
Download link
(570KB, PDF)
Similar books
Non-Euclidean Geometry: A Critical and Historical Study of its Developmentby Roberto Bonola - Open Court Publishing Company
Examines various attempts to prove Euclid's parallel postulate - by the Greeks, Arabs and Renaissance mathematicians. It considers forerunners and founders such as Saccheri, Lambert, Legendre, Gauss, Schweikart, Taurinus, J. Bolyai and Lobachewsky.
(11302 views)
The Elements of Non-Euclidean Plane Geometry and Trigonometryby Horatio Scott Carslaw - Longmans, Green and co.
In this book the author has attempted to treat the Elements of Non-Euclidean Plane Geometry and Trigonometry in such a way as to prove useful to teachers of Elementary Geometry in schools and colleges. Hyperbolic and elliptic geometry are covered.
(10797 views)
The Elements of Non-Euclidean Geometryby D.M.Y. Sommerville - G. Bell & Sons Ltd.
Renowned for its lucid yet meticulous exposition, this text follows the development of non-Euclidean geometry from a fundamental analysis of the concept of parallelism to such advanced topics as inversion and transformations.
(12277 views)
Non-Euclidean Geometryby Henry Manning - Ginn and Company
This book gives a simple and direct account of the Non-Euclidean Geometry, and one which presupposes but little knowledge of Mathematics. The entire book can be read by one who has taken the mathematical courses commonly given in our colleges.
(15563 views)