Logo

Hyperbolic Geometry by J.W. Cannon, W.J. Floyd, R. Kenyon, W.R. Parry

Small book cover: Hyperbolic Geometry

Hyperbolic Geometry
by

Publisher: MSRI
Number of pages: 57

Description:
These notes are intended as a relatively quick introduction to hyperbolic geometry. They review the wonderful history of non-Euclidean geometry. They give five different analytic models for and several combinatorial approximations to non-Euclidean geometry by means of which the reader can develop an intuition for the behavior of this geometry.

Download or read it online for free here:
Download link
(570KB, PDF)

Similar books

Book cover: Neutral and Non-Euclidean GeometriesNeutral and Non-Euclidean Geometries
by - UNC Charlotte
In this course the students are introduced, or re-introduced, to the method of Mathematical Proof. You will be introduced to new and interesting areas in Geometry, with most of the time spent on the study of Hyperbolic Geometry.
(7688 views)
Book cover: Euclid's Parallel Postulate: Its Nature, Validity and Place in Geometrical SystemsEuclid's Parallel Postulate: Its Nature, Validity and Place in Geometrical Systems
by - Open Court Publishing Co.
The parallel postulate is the only distinctive characteristic of Euclid. To pronounce upon its validity and general philosophical significance without endeavoring to know what Non-Euclideans have done would be an inexcusable blunder ...
(4010 views)
Book cover: The Elements of Non-Euclidean Plane Geometry and TrigonometryThe Elements of Non-Euclidean Plane Geometry and Trigonometry
by - Longmans, Green and co.
In this book the author has attempted to treat the Elements of Non-Euclidean Plane Geometry and Trigonometry in such a way as to prove useful to teachers of Elementary Geometry in schools and colleges. Hyperbolic and elliptic geometry are covered.
(5974 views)
Book cover: Non-Euclidean Geometry: A Critical and Historical Study of its DevelopmentNon-Euclidean Geometry: A Critical and Historical Study of its Development
by - Open Court Publishing Company
Examines various attempts to prove Euclid's parallel postulate - by the Greeks, Arabs and Renaissance mathematicians. It considers forerunners and founders such as Saccheri, Lambert, Legendre, Gauss, Schweikart, Taurinus, J. Bolyai and Lobachewsky.
(6554 views)