Logo

Hyperbolic Geometry by J.W. Cannon, W.J. Floyd, R. Kenyon, W.R. Parry

Small book cover: Hyperbolic Geometry

Hyperbolic Geometry
by

Publisher: MSRI
Number of pages: 57

Description:
These notes are intended as a relatively quick introduction to hyperbolic geometry. They review the wonderful history of non-Euclidean geometry. They give five different analytic models for and several combinatorial approximations to non-Euclidean geometry by means of which the reader can develop an intuition for the behavior of this geometry.

Download or read it online for free here:
Download link
(570KB, PDF)

Similar books

Book cover: Geometry with an Introduction to Cosmic TopologyGeometry with an Introduction to Cosmic Topology
by
This text develops non-Euclidean geometry and geometry on surfaces at a level appropriate for undergraduate students who completed a multivariable calculus course and are ready to practice habits of thought needed in advanced undergraduate courses.
(2552 views)
Book cover: Non-Euclidean Geometry: A Critical and Historical Study of its DevelopmentNon-Euclidean Geometry: A Critical and Historical Study of its Development
by - Open Court Publishing Company
Examines various attempts to prove Euclid's parallel postulate - by the Greeks, Arabs and Renaissance mathematicians. It considers forerunners and founders such as Saccheri, Lambert, Legendre, Gauss, Schweikart, Taurinus, J. Bolyai and Lobachewsky.
(6237 views)
Book cover: The Elements of Non-Euclidean GeometryThe Elements of Non-Euclidean Geometry
by - G.Bell & Sons Ltd.
Renowned for its lucid yet meticulous exposition, this text follows the development of non-Euclidean geometry from a fundamental analysis of the concept of parallelism to such advanced topics as inversion and transformations.
(6680 views)
Book cover: Neutral and Non-Euclidean GeometriesNeutral and Non-Euclidean Geometries
by - UNC Charlotte
In this course the students are introduced, or re-introduced, to the method of Mathematical Proof. You will be introduced to new and interesting areas in Geometry, with most of the time spent on the study of Hyperbolic Geometry.
(7295 views)