**Noncommutative Localization in Algebra and Topology**

by Andrew Ranicki

**Publisher**: Cambridge University Press 2002**ISBN/ASIN**: 052168160X**ISBN-13**: 9780521681605**Number of pages**: 323

**Description**:

Noncommutative localization is a powerful algebraic technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. The applications to topology are via the noncommutative localizations of the fundamental group rings.

Download or read it online for free here:

**Download link**

(1.7MB, PDF)

## Similar books

**Manifolds and Differential Forms**

by

**Reyer Sjamaar**-

**Cornell University**

The text covers manifolds and differential forms for an audience of undergraduates who have taken a typical calculus sequence, including basic linear algebra and multivariable calculus up to the integral theorems of Green, Gauss and Stokes.

(

**7804**views)

**Topology**

by

**Curtis T. McMullen**-

**Harvard University**

Contents: Introduction; Background in set theory; Topology; Connected spaces; Compact spaces; Metric spaces; Normal spaces; Algebraic topology and homotopy theory; Categories and paths; Path lifting and covering spaces; Global topology; etc.

(

**2944**views)

**Manifolds**

by

**Neil Lambert**-

**King's College London**

From the table of contents: Manifolds (Elementary Topology and Definitions); The Tangent Space; Maps Between Manifolds; Vector Fields; Tensors; Differential Forms; Connections, Curvature and Metrics; Riemannian Manifolds.

(

**5220**views)

**Lectures on Sheaf Theory**

by

**C.H. Dowker**-

**Tata Institute of Fundamental Research**

A sheaf is a tool for systematically tracking locally defined data attached to the open sets of a topological space. Contents: Sheaves; Sections; Cohomology groups of a space with coefficients in a presheaf; Introduction of the family Phi; etc.

(

**5483**views)