Lectures on Cauchy Problem by Sigeru Mizohata

Small book cover: Lectures on Cauchy Problem

Lectures on Cauchy Problem

Publisher: Tata Institute of Fundamental Research
Number of pages: 191

A Cauchy problem in mathematics asks for the solution of a partial differential equation that satisfies certain conditions which are given on a hypersurface in the domain. Cauchy problems are an extension of initial value problems and are to be contrasted with boundary value problems.

Download or read it online for free here:
Download link
(940KB, PDF)

Similar books

Book cover: The Place of Partial Differential Equations in Mathematical PhysicsThe Place of Partial Differential Equations in Mathematical Physics
by - Patna University
The reason for my choosing the partial differential equations as the subject for these lectures is my wish to inspire in my audience a love for Mathematics. I give a brief historical account of the application of Mathematics to natural phenomena.
Book cover: Mathematical Theory of Scattering ResonancesMathematical Theory of Scattering Resonances
by - MIT
Contents: Scattering resonances in dimension one; Resonances for potentials in odd dimensions; Black box scattering in Rn; The method of complex scaling; Perturbation theory for resonances; Resolvent estimates in semiclassical scattering; etc.
Book cover: Linear Partial Differential Equations and Fourier TheoryLinear Partial Differential Equations and Fourier Theory
by - Cambridge University Press
Textbook for an introductory course on linear partial differential equations and boundary value problems. It also provides introduction to basic Fourier analysis and functional analysis. Written for third-year undergraduates in mathematical sciences.
Book cover: Partial Differential Equations of Mathematical PhysicsPartial Differential Equations of Mathematical Physics
by - Rice University
This course aims to make students aware of the physical origins of the main partial differential equations of classical mathematical physics, including the equations of fluid and solid mechanics, thermodynamics, and classical electrodynamics.