Logo

The Contraction Mapping Principle and Some Applications

The Contraction Mapping Principle and Some Applications
by

Publisher: American Mathematical Society
Number of pages: 90

Description:
These notes contain various versions of the contraction mapping principle. Several applications to existence theorems in the theories of differential and integral equations and variational inequalities are given. Also discussed are Hilbert's projective metric and iterated function systems.

Download or read it online for free here:
Download link
(690KB, PDF)

Similar books

Book cover: Differential Equations and Linear AlgebraDifferential Equations and Linear Algebra
by - Heriot-Watt University
From the table of contents: Linear second order ODEs; Homogeneous linear ODEs; Non-homogeneous linear ODEs; Laplace transforms; Linear algebraic equations; Matrix Equations; Linear algebraic eigenvalue problems; Systems of differential equations.
(7239 views)
Book cover: Periodic Solutions for Evolution EquationsPeriodic Solutions for Evolution Equations
by - American Mathematical Society
We study the existence and uniqueness of periodic solutions for evolution equations. We analyze the one-dimensional case, then for arbitrary dimensions. We consider linear symmetric operators. We prove the same results for non-linear operators.
(6935 views)
Book cover: Differential EquationsDifferential Equations
by - John Wiley & Sons
With the formal exercise in solving the usual types of ordinary differential equations it is the object of this text to combine a thorough drill in the solution of problems in which the student sets up and integrates his own differential equation.
(11259 views)
Book cover: A First Course in Elementary Differential EquationsA First Course in Elementary Differential Equations
by - Arkansas Tech University
Contents: Basic Terminology; Qualitative Analysis: Direction Field of y'=f(t,y); Existence and Uniqueness of Solutions to First Order Linear IVP; Solving First Order Linear Homogeneous DE; Solving First Order Linear Non Homogeneous DE; etc.
(9200 views)