Logo

The Contraction Mapping Principle and Some Applications

The Contraction Mapping Principle and Some Applications
by

Publisher: American Mathematical Society
Number of pages: 90

Description:
These notes contain various versions of the contraction mapping principle. Several applications to existence theorems in the theories of differential and integral equations and variational inequalities are given. Also discussed are Hilbert's projective metric and iterated function systems.

Home page url

Download or read it online for free here:
Download link
(690KB, PDF)

Similar books

Book cover: Second-order Ordinary Differential EquationsSecond-order Ordinary Differential Equations
by - Bookboon
This text provides an introduction to all the relevant material normally encountered at university level: series solution, special functions, Sturm-Liouville theory and the definition, properties and use of various integral transforms.
(5027 views)
Book cover: Ordinary Differential Equations and Dynamical SystemsOrdinary Differential Equations and Dynamical Systems
by - Universitaet Wien
This book provides an introduction to ordinary differential equations and dynamical systems. We start with some simple examples of explicitly solvable equations. Then we prove the fundamental results concerning the initial value problem.
(11267 views)
Book cover: Examples of differential equations, with rules for their solutionExamples of differential equations, with rules for their solution
by - Boston, Ginn & Company
This work has been prepared to meet a want in a course on the subject, arranged for advanced students in Physics. It could be used in connection with lectures on the theory of Differential Equations and the derivation of the methods of solution.
(3256 views)
Book cover: Differential Equations and Linear AlgebraDifferential Equations and Linear Algebra
by - Heriot-Watt University
From the table of contents: Linear second order ODEs; Homogeneous linear ODEs; Non-homogeneous linear ODEs; Laplace transforms; Linear algebraic equations; Matrix Equations; Linear algebraic eigenvalue problems; Systems of differential equations.
(3260 views)