Logo

Advanced Topics in Probability

Advanced Topics in Probability
by

Publisher: New York University
Number of pages: 203

Description:
Topics: Brownian Motion; Continuous Parameter Martingales; Diffusion Processes; Weak convergence and Compactness; Stochastic Integrals and Ito's formula; Markov Processes, Kolmogorov's equations; Stochastic Differential Equations; Existence and Uniqueness; Girsanov Formula; Random Time Change; The two dimensional case; The General Case; Limit Theorems; Reflected Brownian Motion; Reflection in higher dimensions; Invariant Measures.

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Probability, Random Processes, and Ergodic PropertiesProbability, Random Processes, and Ergodic Properties
by - Springer
A self-contained treatment of the theory of probability, random processes. It is intended to lay theoretical foundations for measure and integration theory, and to develop the long term time average behavior of measurements made on random processes.
(8425 views)
Book cover: Lecture Notes on Free ProbabilityLecture Notes on Free Probability
by - arXiv
Contents: Non-commutative Probability Spaces; Distributions; Freeness; Asymptotic Freeness of Random Matrices; Asymptotic Freeness of Haar Unitary Matrices; Free Products of Probability Spaces; Law of Addition; Limit Theorems; Multivariate CLT; etc.
(3332 views)
Book cover: Lectures on Integrable ProbabilityLectures on Integrable Probability
by - arXiv
Topics include integrable models of random growth, determinantal point processes, Schur processes and Markov dynamics on them, Macdonald processes and their application to asymptotics of directed polymers in random media.
(3051 views)
Book cover: Lectures on Elementary ProbabilityLectures on Elementary Probability
by - University of Arizona
From the table of contents: Combinatorics; Probability Axioms; Discrete Random Variables; The Bernoulli Process; Continuous Random Variables; The Poisson Process; The weak law of large numbers; The central limit theorem; Estimation.
(4300 views)