**Real Analysis**

by Martin Smith-Martinez, et al.

**Publisher**: Wikibooks 2013

**Description**:

This introductory book is concerned in particular with analysis in the context of the real numbers. It will first develop the basic concepts needed for the idea of functions, then move on to the more analysis-based topics.

Download or read it online for free here:

**Read online**

(online html)

## Similar books

**An Introduction to Real Analysis**

by

**John K. Hunter**-

**University of California Davis**

These are some notes on introductory real analysis. They cover the properties of the real numbers, sequences and series of real numbers, limits of functions, continuity, differentiability, sequences and series of functions, and Riemann integration.

(

**3006**views)

**Real Analysis**

by

**A. M. Bruckner, J. B. Bruckner, B. S. Thomson**-

**Prentice Hall**

This book provides an introductory chapter containing background material as well as a mini-overview of much of the course, making the book accessible to readers with varied backgrounds. It uses a wealth of examples to illustrate important concepts.

(

**14551**views)

**Notes on Measure and Integration**

by

**John Franks**-

**arXiv**

My intent is to introduce the Lebesgue integral in a quick, and hopefully painless, way and then go on to investigate the standard convergence theorems and a brief introduction to the Hilbert space of L2 functions on the interval.

(

**4234**views)

**A Course of Pure Mathematics**

by

**G.H. Hardy**-

**Cambridge University Press**

This classic book has inspired successive generations of budding mathematicians at the beginning of their undergraduate courses. Hardy explains the fundamental ideas of the differential and integral calculus, and the properties of infinite series.

(

**7401**views)