Logo

Introductory Treatise On Lie's Theory Of Finite Continuous Transformation Groups

Large book cover: Introductory Treatise On Lie's Theory Of Finite Continuous Transformation Groups

Introductory Treatise On Lie's Theory Of Finite Continuous Transformation Groups
by

Publisher: Oxford Clarendon Press
ISBN/ASIN: 1406720259
Number of pages: 460

Description:
In this treatise an attempt is made to give, in as elementary a form as possible, the main outlines of Lie's theory of Continuous Groups. Even those familiar with the theory of Continuous Groups may find something new in the form in which the theory is here presented.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Group Theory: Birdtracks, Lie's, and Exceptional GroupsGroup Theory: Birdtracks, Lie's, and Exceptional Groups
by - Princeton University Press
A book on the theory of Lie groups for researchers and graduate students in theoretical physics and mathematics. It answers what Lie groups preserve trilinear, quadrilinear, and higher order invariants. Written in a lively and personable style.
(9793 views)
Book cover: Lectures on Discrete Subgroups of Lie GroupsLectures on Discrete Subgroups of Lie Groups
by - Tata Institute of Fundamental Research
Contents: Preliminaries; Complexification of a real Linear Lie Group; Intrinsic characterization of K* and E; R-regular elements; Discrete Subgroups; Some Ergodic Properties of Discrete Subgroups; Real Forms of Semi-simple Algebraic Groups; etc.
(4447 views)
Book cover: An Introduction to Lie Group IntegratorsAn Introduction to Lie Group Integrators
by - arXiv
The authors give a short and elementary introduction to Lie group methods. A selection of applications of Lie group integrators are discussed. Finally, a family of symplectic integrators on cotangent bundles of Lie groups is presented ...
(980 views)
Book cover: Notes on Classical GroupsNotes on Classical Groups
by - Queen Mary and Westfield College
Notes for an M.Sc. course: Fields and vector spaces; Linear and projective groups; Polarities and forms; Symplectic groups; Unitary groups; Orthogonal groups; Klein correspondence and triality; A short bibliography on classical groups.
(7254 views)