Logo

Hyperbolic Manifolds, Discrete Groups and Ergodic Theory

Small book cover: Hyperbolic Manifolds, Discrete Groups and Ergodic Theory

Hyperbolic Manifolds, Discrete Groups and Ergodic Theory
by

Publisher: Harvard University
Number of pages: 118

Description:
Contents: Ergodic theory; Dynamics on hyperbolic surfaces; Orbit counting, equidistribution and arithmetic; Spectral theory; Mixing of unitary representations of SLnR; Amenability; The Laplacian; All unitary representations of PSL2(R); Kazhdan's property T; Ergodic theory at infinity of hyperbolic manifolds; Lattices: Dimension 1; Dimension 2; Lattices, norms and totally real fields; Dimension 3; Dimension 4, 5, 6; Higher rank dynamics on the circle; The discriminant-regulator paradox.

Home page url

Download or read it online for free here:
Download link
(4.1MB, PDF)

Similar books

Book cover: Ordinary Differential Equations and Dynamical SystemsOrdinary Differential Equations and Dynamical Systems
by - Universitaet Wien
This book provides an introduction to ordinary differential equations and dynamical systems. We start with some simple examples of explicitly solvable equations. Then we prove the fundamental results concerning the initial value problem.
(10548 views)
Book cover: An Introduction to Quantum ChaosAn Introduction to Quantum Chaos
by - arXiv
Nonlinear dynamics (''chaos theory'') and quantum mechanics are two of the scientific triumphs of the 20th century. The author gives a brief review of the origin and fundamentals of both quantum mechanics and nonlinear dynamics.
(6874 views)
Book cover: Dynamical SystemsDynamical Systems
by - OER Commons
This book addresses the following topics: Iterations and fixed points; bifurcations; conjugacy; space and time averages; the contraction fixed point theorem; Hutchinson's theorem and fractal images; hyperbolicity; and symbolic dynamics.
(5412 views)
Book cover: Dynamical Systems: Analytical and Computational TechniquesDynamical Systems: Analytical and Computational Techniques
by - InTech
There has been a considerable progress made during the recent past on mathematical techniques for studying dynamical systems. This progress is due to our increasing ability to mathematically model physical processes and to analyze and solve them.
(1191 views)