An Introduction to D-Modules
by Jean-Pierre Schneiders
Publisher: Universite de Liege 1991
Number of pages: 73
Description:
The purpose of these notes is to introduce the reader to the algebraic theory of systems of partial differential equations on a complex analytic manifold. We start by explaining how to switch from the classical point of view to the point of view of algebraic analysis. Then, we perform a detailed study of the ring of differential operators and its modules.
Download or read it online for free here:
Download link
(640KB, PDF)
Similar books

by Valeriy Serov - University of Oulu
Contents: Preliminaries; Local Existence Theory; Fourier Series; One-dimensional Heat Equation; One-dimensional Wave Equation; Laplace Equation; Laplace Operator; Dirichlet and Neumann Problems; Layer Potentials; The Heat Operator; The Wave Operator.
(13072 views)

by J.L. Lions - Tata Institute of Fundamental Research
In these lectures we study the boundary value problems associated with elliptic equation by using essentially L2 estimates (or abstract analogues of such estimates). We consider only linear problem, and we do not study the Schauder estimates.
(9483 views)

by R. Bryant, P. Griffiths, D. Grossman - University Of Chicago Press
The authors present the results of their development of a theory of the geometry of differential equations, focusing especially on Lagrangians and Poincare-Cartan forms. They also cover certain aspects of the theory of exterior differential systems.
(17018 views)

by Marcus Pivato - Cambridge University Press
Textbook for an introductory course on linear partial differential equations and boundary value problems. It also provides introduction to basic Fourier analysis and functional analysis. Written for third-year undergraduates in mathematical sciences.
(28059 views)