Logo

An Introduction to D-Modules

Small book cover: An Introduction to D-Modules

An Introduction to D-Modules
by

Publisher: Universite de Liege
Number of pages: 73

Description:
The purpose of these notes is to introduce the reader to the algebraic theory of systems of partial differential equations on a complex analytic manifold. We start by explaining how to switch from the classical point of view to the point of view of algebraic analysis. Then, we perform a detailed study of the ring of differential operators and its modules.

Home page url

Download or read it online for free here:
Download link
(640KB, PDF)

Similar books

Book cover: Introduction to the Numerical Integration of PDEsIntroduction to the Numerical Integration of PDEs
by - University of Durham
In these notes, we describe the design of a small C++ program which solves numerically the sine-Gordon equation. The program is build progressively to make it multipurpose and easy to modify to solve any system of partial differential equations.
(7820 views)
Book cover: Partial Differential Equations with MaplePartial Differential Equations with Maple
by - Tampere University of Technology
The course presents the basic theory and solution techniques for the partial differential equation problems most commonly encountered in science. The student is assumed to know something about linear algebra and ordinary differential equations.
(4816 views)
Book cover: Entropy and Partial Differential EquationsEntropy and Partial Differential Equations
by - UC Berkeley
This course surveys various uses of 'entropy' concepts in the study of PDE, both linear and nonlinear. This is a mathematics course, the main concern is PDE and how various notions involving entropy have influenced our understanding of PDE.
(9648 views)
Book cover: Introduction to Partial Differential EquationsIntroduction to Partial Differential Equations
by - UCSB
The author develops the most basic ideas from the theory of partial differential equations, and apply them to the simplest models arising from physics. He presents some of the mathematics that can be used to describe the vibrating circular membrane.
(8528 views)