**The Place of Partial Differential Equations in Mathematical Physics**

by Ganesh Prasad

**Publisher**: Patna University 1924**Number of pages**: 64

**Description**:

The chief reason for my choosing 'The place of partial differential equations in Mathematical Physics' as the subject for these lectures is my wish to inspire in my audience a love for Mathematics. Before entering into details, however, I shall give a brief historical account of the application of Mathematics to natural phenomena.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Introduction to Quantum Integrability**

by

**A. Doikou, S. Evangelisti, G. Feverati, N. Karaiskos**-

**arXiv**

The authors review the basic concepts regarding quantum integrability. Special emphasis is given on the algebraic content of integrable models. A short review on quantum groups as well as the quantum inverse scattering method is also presented.

(

**5132**views)

**Mathematical Physics: Problems and Solutions**

by

**G. S. Beloglazov, et al.**-

**Samara University Press**

The present Proceedings is intended to be used by the students of physical and mechanical-mathematical departments of the universities, who are interested in acquiring a deeper knowledge of the methods of mathematical and theoretical physics.

(

**6080**views)

**Floer Homology, Gauge Theory, and Low Dimensional Topology**

by

**David Ellwood, at al.**-

**American Mathematical Society**

Mathematical gauge theory studies connections on principal bundles. The book provides an introduction to current research, covering material from Heegaard Floer homology, contact geometry, smooth four-manifold topology, and symplectic four-manifolds.

(

**7648**views)

**LieART: A Mathematica Application for Lie Algebras and Representation Theory**

by

**Robert Feger, Thomas W. Kephart**-

**arXiv**

We present the Mathematica application LieART (Lie Algebras and Representation Theory) for computations in Lie Algebras and representation theory, such as tensor product decomposition and subalgebra branching of irreducible representations.

(

**4856**views)