The Place of Partial Differential Equations in Mathematical Physics

Large book cover: The Place of Partial Differential Equations in Mathematical Physics

The Place of Partial Differential Equations in Mathematical Physics

Publisher: Patna University
Number of pages: 64

The chief reason for my choosing 'The place of partial differential equations in Mathematical Physics' as the subject for these lectures is my wish to inspire in my audience a love for Mathematics. Before entering into details, however, I shall give a brief historical account of the application of Mathematics to natural phenomena.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Mathematics for Theoretical PhysicsMathematics for Theoretical Physics
by - arXiv
This is a comprehensive and precise coverage of the mathematical concepts and tools used in present theoretical physics: differential geometry, Lie groups, fiber bundles, Clifford algebra, differential operators, normed algebras, connections, etc.
Book cover: Mathematics for Physics: A Guided Tour for Graduate StudentsMathematics for Physics: A Guided Tour for Graduate Students
by - Cambridge University Press
This book provides a graduate-level introduction to the mathematics used in research in physics. It focuses on differential and integral equations, Fourier series, calculus of variations, differential geometry, topology and complex variables.
Book cover: Neutrosophic Physics: More Problems, More SolutionsNeutrosophic Physics: More Problems, More Solutions
by - North-European Scientific Publishers
Neutrosophic logics is one of the promising research instruments, which could be successfully applied by a theoretical physicist. Neutrosophic logics states that neutralities may be between any physical states, or states of space-time.
Book cover: Mathematical Physics IIMathematical Physics II
by - SISSA
These are lecture notes on various topics in analytic theory of differential equations: Singular points of solutions to analytic differential equations; Monodromy of linear differential operators with rational coefficients.