Logo

Reinforcement Learning and Optimal Control

Small book cover: Reinforcement Learning and Optimal Control

Reinforcement Learning and Optimal Control
by

Publisher: Athena Scientific
Number of pages: 276

Description:
The purpose of the book is to consider large and challenging multistage decision problems, which can be solved in principle by dynamic programming and optimal control, but their exact solution is computationally intractable. We discuss solution methods that rely on approximations to produce suboptimal policies with adequate performance.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Learning Deep Architectures for AILearning Deep Architectures for AI
by - Now Publishers
This book discusses the principles of learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models.
(2880 views)
Book cover: Machine Learning, Neural and Statistical ClassificationMachine Learning, Neural and Statistical Classification
by - Ellis Horwood
The book provides a review of different approaches to classification, compares their performance on challenging data-sets, and draws conclusions on their applicability to realistic industrial problems. A wide variety of approaches has been taken.
(19047 views)
Book cover: Machine Learning for DesignersMachine Learning for Designers
by - O'Reilly Media
This book introduces you to contemporary machine learning systems and helps you integrate machine-learning capabilities into your user-facing designs. Patrick Hebron explains how machine-learning applications can affect the way you design websites.
(1868 views)
Book cover: Understanding Machine Learning: From Theory to AlgorithmsUnderstanding Machine Learning: From Theory to Algorithms
by - Cambridge University Press
This book introduces machine learning and the algorithmic paradigms it offers. It provides a theoretical account of the fundamentals underlying machine learning and mathematical derivations that transform these principles into practical algorithms.
(3273 views)