Logo

Reinforcement Learning and Optimal Control

Small book cover: Reinforcement Learning and Optimal Control

Reinforcement Learning and Optimal Control
by

Publisher: Athena Scientific
Number of pages: 276

Description:
The purpose of the book is to consider large and challenging multistage decision problems, which can be solved in principle by dynamic programming and optimal control, but their exact solution is computationally intractable. We discuss solution methods that rely on approximations to produce suboptimal policies with adequate performance.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: An Introductory Study on Time Series Modeling and ForecastingAn Introductory Study on Time Series Modeling and Forecasting
by - arXiv
This work presents a concise description of some popular time series forecasting models used in practice, with their features. We describe three important classes of time series models, viz. the stochastic, neural networks and SVM based models.
(6409 views)
Book cover: Learning Deep Architectures for AILearning Deep Architectures for AI
by - Now Publishers
This book discusses the principles of learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models.
(3088 views)
Book cover: Inductive Logic Programming: Theory and MethodsInductive Logic Programming: Theory and Methods
by - ScienceDirect
Inductive Logic Programming is a new discipline which investigates the inductive construction of first-order clausal theories from examples and background knowledge. The authors survey the most important theories and methods of this new field.
(26067 views)
Book cover: Gaussian Processes for Machine LearningGaussian Processes for Machine Learning
by - The MIT Press
Gaussian processes provide a principled, practical, probabilistic approach to learning in kernel machines. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics.
(20767 views)