**Algebraic Curves: an Introduction to Algebraic Geometry**

by William Fulton

**Publisher**: Benjamin 1969**ISBN/ASIN**: B000OFMIJW**Number of pages**: 129

**Description**:

The aim of these notes is to develop the theory of algebraic curves from the viewpoint of modern algebraic geometry, but without excessive prerequisites. We have assumed that the reader is familiar with some basic properties of rings, ideals, and polynomials, such as is often covered in a one-semester course in modern algebra; additional commutative algebra is developed in later sections.

Download or read it online for free here:

**Download link**

(0.7MB, PDF)

## Similar books

**Introduction to Algebraic Geometry**

by

**Yuriy Drozd**

From the table of contents: Affine Varieties; Ideals and varieties. Hilbert's Basis Theorem. Regular functions and regular mappings. Projective and Abstract Varieties; Dimension Theory; Regular and singular points; Intersection theory.

(

**7763**views)

**Algebraic Groups and Discontinuous Subgroups**

by

**Armand Borel, George D. Mostow**-

**American Mathematical Society**

The book covers linear algebraic groups and arithmetic groups, adeles and arithmetic properties of algebraic groups, automorphic functions and spectral decomposition of L2-spaces, vector valued cohomology and deformation of discrete subgroups, etc.

(

**10342**views)

**Lectures On Old And New Results On Algebraic Curves**

by

**P. Samuel**-

**Tata Institute Of Fundamental Research**

The aim of this text is to give a proof, due to Hans Grauert, of an analogue of Mordell's conjecture. Contents: Introduction; Algebro-Geometric Background; Algebraic Curves; The Theorem of Grauert (Mordell's conjecture for function fields).

(

**5896**views)

**Lectures on Moduli of Curves**

by

**D. Gieseker**-

**Tata Institute of Fundamental Research**

These lecture notes are based on some lectures given in 1980. The object of the lectures was to construct a projective moduli space for stable curves of genus greater than or equal two using Mumford's geometric invariant theory.

(

**5444**views)