**Machine Learning**

by Abdelhamid Mellouk, Abdennacer Chebira

**Publisher**: InTech 2009**ISBN-13**: 9789537619561**Number of pages**: 450

**Description**:

Neural machine learning approaches, Hamiltonian neural networks, similarity discriminant analysis, machine learning methods for spoken dialogue simulation and optimization, linear subspace learning for facial expression analysis, 3d shape classification and retrieval, genetic network programming with reinforcement learning, heuristic dynamic programming, and more.

Download or read it online for free here:

**Download link**

(PDF)

## Similar books

**A First Encounter with Machine Learning**

by

**Max Welling**-

**University of California Irvine**

The book you see before you is meant for those starting out in the field of machine learning, who need a simple, intuitive explanation of some of the most useful algorithms that our field has to offer. A prelude to the more advanced text books.

(

**10837**views)

**An Introduction to Statistical Learning**

by

**G. James, D. Witten, T. Hastie, R. Tibshirani**-

**Springer**

This book provides an introduction to statistical learning methods. It contains a number of R labs with detailed explanations on how to implement the various methods in real life settings and it is a valuable resource for a practicing data scientist.

(

**8891**views)

**Introduction to Machine Learning**

by

**Amnon Shashua**-

**arXiv**

Introduction to Machine learning covering Statistical Inference (Bayes, EM, ML/MaxEnt duality), algebraic and spectral methods (PCA, LDA, CCA, Clustering), and PAC learning (the Formal model, VC dimension, Double Sampling theorem).

(

**21118**views)

**Machine Learning and Data Mining: Lecture Notes**

by

**Aaron Hertzmann**-

**University of Toronto**

Contents: Introduction to Machine Learning; Linear Regression; Nonlinear Regression; Quadratics; Basic Probability Theory; Probability Density Functions; Estimation; Classification; Gradient Descent; Cross Validation; Bayesian Methods; and more.

(

**9211**views)