Machine Learning
by Abdelhamid Mellouk, Abdennacer Chebira
Publisher: InTech 2009
ISBN-13: 9789537619561
Number of pages: 450
Description:
Neural machine learning approaches, Hamiltonian neural networks, similarity discriminant analysis, machine learning methods for spoken dialogue simulation and optimization, linear subspace learning for facial expression analysis, 3d shape classification and retrieval, genetic network programming with reinforcement learning, heuristic dynamic programming, and more.
Download or read it online for free here:
Download link
(PDF)
Similar books
Information Theory, Inference, and Learning Algorithms
by David J. C. MacKay - Cambridge University Press
A textbook on information theory, Bayesian inference and learning algorithms, useful for undergraduates and postgraduates students, and as a reference for researchers. Essential reading for students of electrical engineering and computer science.
(13146 views)
by David J. C. MacKay - Cambridge University Press
A textbook on information theory, Bayesian inference and learning algorithms, useful for undergraduates and postgraduates students, and as a reference for researchers. Essential reading for students of electrical engineering and computer science.
(13146 views)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
by T. Hastie, R. Tibshirani, J. Friedman - Springer
This book brings together many of the important new ideas in learning, and explains them in a statistical framework. The authors emphasize the methods and their conceptual underpinnings rather than their theoretical properties.
(23177 views)
by T. Hastie, R. Tibshirani, J. Friedman - Springer
This book brings together many of the important new ideas in learning, and explains them in a statistical framework. The authors emphasize the methods and their conceptual underpinnings rather than their theoretical properties.
(23177 views)
Statistical Foundations of Machine Learning
by Gianluca Bontempi, Souhaib Ben Taieb - OTexts
This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. This manuscript aims to find a good balance between theory and practice.
(2758 views)
by Gianluca Bontempi, Souhaib Ben Taieb - OTexts
This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. This manuscript aims to find a good balance between theory and practice.
(2758 views)
Machine Learning: The Complete Guide
- Wikipedia
Contents: Introduction and Main Principles; Background and Preliminaries; Knowledge discovery in Databases; Reasoning; Search Methods; Statistics; Main Learning Paradigms; Classification Tasks; Online Learning; Semi-supervised learning; etc.
(5429 views)
- Wikipedia
Contents: Introduction and Main Principles; Background and Preliminaries; Knowledge discovery in Databases; Reasoning; Search Methods; Statistics; Main Learning Paradigms; Classification Tasks; Online Learning; Semi-supervised learning; etc.
(5429 views)