Logo

Machine Learning by Abdelhamid Mellouk, Abdennacer Chebira

Small book cover: Machine Learning

Machine Learning
by

Publisher: InTech
ISBN-13: 9789537619561
Number of pages: 450

Description:
Neural machine learning approaches, Hamiltonian neural networks, similarity discriminant analysis, machine learning methods for spoken dialogue simulation and optimization, linear subspace learning for facial expression analysis, 3d shape classification and retrieval, genetic network programming with reinforcement learning, heuristic dynamic programming, and more.

Home page url

Download or read it online for free here:
Download link
(PDF)

Similar books

Book cover: Machine Learning, Neural and Statistical ClassificationMachine Learning, Neural and Statistical Classification
by - Ellis Horwood
The book provides a review of different approaches to classification, compares their performance on challenging data-sets, and draws conclusions on their applicability to realistic industrial problems. A wide variety of approaches has been taken.
(25874 views)
Book cover: The LION Way: Machine Learning plus Intelligent OptimizationThe LION Way: Machine Learning plus Intelligent Optimization
by - Lionsolver, Inc.
Learning and Intelligent Optimization (LION) is the combination of learning from data and optimization applied to solve complex problems. This book is about increasing the automation level and connecting data directly to decisions and actions.
(31860 views)
Book cover: An Introduction to Statistical LearningAn Introduction to Statistical Learning
by - Springer
This book provides an introduction to statistical learning methods. It contains a number of R labs with detailed explanations on how to implement the various methods in real life settings and it is a valuable resource for a practicing data scientist.
(8442 views)
Book cover: The Elements of Statistical Learning: Data Mining, Inference, and PredictionThe Elements of Statistical Learning: Data Mining, Inference, and Prediction
by - Springer
This book brings together many of the important new ideas in learning, and explains them in a statistical framework. The authors emphasize the methods and their conceptual underpinnings rather than their theoretical properties.
(37948 views)