Machine Learning
by Abdelhamid Mellouk, Abdennacer Chebira
Publisher: InTech 2009
ISBN-13: 9789537619561
Number of pages: 450
Description:
Neural machine learning approaches, Hamiltonian neural networks, similarity discriminant analysis, machine learning methods for spoken dialogue simulation and optimization, linear subspace learning for facial expression analysis, 3d shape classification and retrieval, genetic network programming with reinforcement learning, heuristic dynamic programming, and more.
Download or read it online for free here:
Download link
(PDF)
Similar books
Algorithms for Reinforcement Learning
by Csaba Szepesvari - Morgan and Claypool Publishers
We focus on those algorithms of reinforcement learning that build on the theory of dynamic programming. We give a comprehensive catalog of learning problems, describe the core ideas, followed by the discussion of their properties and limitations.
(2023 views)
by Csaba Szepesvari - Morgan and Claypool Publishers
We focus on those algorithms of reinforcement learning that build on the theory of dynamic programming. We give a comprehensive catalog of learning problems, describe the core ideas, followed by the discussion of their properties and limitations.
(2023 views)
Statistical Foundations of Machine Learning
by Gianluca Bontempi, Souhaib Ben Taieb - OTexts
This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. This manuscript aims to find a good balance between theory and practice.
(2928 views)
by Gianluca Bontempi, Souhaib Ben Taieb - OTexts
This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. This manuscript aims to find a good balance between theory and practice.
(2928 views)
Lecture Notes in Machine Learning
by Zdravko Markov - Central Connecticut State University
Contents: Introduction; Concept learning; Languages for learning; Version space learning; Induction of Decision trees; Covering strategies; Searching the generalization / specialization graph; Inductive Logic Progrogramming; Unsupervised Learning ...
(3674 views)
by Zdravko Markov - Central Connecticut State University
Contents: Introduction; Concept learning; Languages for learning; Version space learning; Induction of Decision trees; Covering strategies; Searching the generalization / specialization graph; Inductive Logic Progrogramming; Unsupervised Learning ...
(3674 views)
Machine Learning: The Complete Guide
- Wikipedia
Contents: Introduction and Main Principles; Background and Preliminaries; Knowledge discovery in Databases; Reasoning; Search Methods; Statistics; Main Learning Paradigms; Classification Tasks; Online Learning; Semi-supervised learning; etc.
(5618 views)
- Wikipedia
Contents: Introduction and Main Principles; Background and Preliminaries; Knowledge discovery in Databases; Reasoning; Search Methods; Statistics; Main Learning Paradigms; Classification Tasks; Online Learning; Semi-supervised learning; etc.
(5618 views)