**Reinforcement Learning**

by C. Weber, M. Elshaw, N. M. Mayer

**Publisher**: InTech 2008**ISBN-13**: 9783902613141**Number of pages**: 424

**Description**:

The first 11 chapters of this book describe and extend the scope of reinforcement learning. The remaining 11 chapters show that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional, hand-designed, non-learning controllers. As learning computers can deal with technical complexities, the tasks of human operators remain to specify goals on increasingly higher levels.

Download or read it online for free here:

**Download link**

(12MB, PDF)

## Similar books

**Optimal and Learning Control for Autonomous Robots**

by

**Jonas Buchli, et al.**-

**arXiv.org**

The starting point is the formulation of of an optimal control problem and deriving the different types of solutions and algorithms from there. These lecture notes aim at supporting this unified view with a unified notation wherever possible.

(

**387**views)

**An Introduction to Statistical Learning**

by

**G. James, D. Witten, T. Hastie, R. Tibshirani**-

**Springer**

This book provides an introduction to statistical learning methods. It contains a number of R labs with detailed explanations on how to implement the various methods in real life settings and it is a valuable resource for a practicing data scientist.

(

**3367**views)

**Algorithms for Reinforcement Learning**

by

**Csaba Szepesvari**-

**Morgan and Claypool Publishers**

We focus on those algorithms of reinforcement learning that build on the theory of dynamic programming. We give a comprehensive catalog of learning problems, describe the core ideas, followed by the discussion of their properties and limitations.

(

**1719**views)

**A Survey of Statistical Network Models**

by

**A. Goldenberg, A.X. Zheng, S.E. Fienberg, E.M. Airoldi**-

**arXiv**

We begin with the historical development of statistical network modeling and then we introduce some examples in the network literature. Our subsequent discussion focuses on prominent static and dynamic network models and their interconnections.

(

**2146**views)