Logo

Reinforcement Learning by C. Weber, M. Elshaw, N. M. Mayer

Small book cover: Reinforcement Learning

Reinforcement Learning
by

Publisher: InTech
ISBN-13: 9783902613141
Number of pages: 424

Description:
The first 11 chapters of this book describe and extend the scope of reinforcement learning. The remaining 11 chapters show that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional, hand-designed, non-learning controllers. As learning computers can deal with technical complexities, the tasks of human operators remain to specify goals on increasingly higher levels.

Home page url

Download or read it online for free here:
Download link
(12MB, PDF)

Similar books

Book cover: Understanding Machine Learning: From Theory to AlgorithmsUnderstanding Machine Learning: From Theory to Algorithms
by - Cambridge University Press
This book introduces machine learning and the algorithmic paradigms it offers. It provides a theoretical account of the fundamentals underlying machine learning and mathematical derivations that transform these principles into practical algorithms.
(1603 views)
Book cover: Modeling Agents with Probabilistic ProgramsModeling Agents with Probabilistic Programs
by - AgentModels.org
This book describes and implements models of rational agents for (PO)MDPs and Reinforcement Learning. One motivation is to create richer models of human planning, which capture human biases. The book assumes basic programming experience.
(650 views)
Book cover: Statistical Foundations of Machine LearningStatistical Foundations of Machine Learning
by - OTexts
This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. This manuscript aims to find a good balance between theory and practice.
(2748 views)
Book cover: Optimal and Learning Control for Autonomous RobotsOptimal and Learning Control for Autonomous Robots
by - arXiv.org
The starting point is the formulation of of an optimal control problem and deriving the different types of solutions and algorithms from there. These lecture notes aim at supporting this unified view with a unified notation wherever possible.
(517 views)