**Homological Conjectures**

by Tom Marley, Laura Lynch

**Publisher**: University of Nebraska - Lincoln 2010**Number of pages**: 56

**Description**:

This course is an overview of Homological Conjectures, in particular, the Zero Divisor Conjecture, the Rigidity Conjecture, the Intersection Conjectures, Bass' Conjecture, the Superheight Conjecture, the Direct Summand Conjecture, the Monomial Conjecture, the Syzygy Conjecture, and the big and small Cohen Macaulay Conjectures. Many of these are shown to imply others.

Download or read it online for free here:

**Download link**

(810KB, PDF)

## Similar books

**Frobenius Splitting in Commutative Algebra**

by

**Karen E. Smith, Wenliang Zhang**-

**arXiv**

Frobenius splitting has inspired a vast arsenal of techniques in commutative algebra, algebraic geometry, and representation theory. The purpose of these lectures is to give a gentle introduction to Frobenius splitting for beginners.

(

**2664**views)

**A Primer of Commutative Algebra**

by

**J.S. Milne**

These notes prove the basic theorems in commutative algebra required for algebraic geometry and algebraic groups. They assume only a knowledge of the algebra usually taught in advanced undergraduate or first-year graduate courses.

(

**5756**views)

**A Quick Review of Commutative Algebra**

by

**Sudhir R. Ghorpade**-

**Indian Institute of Technology, Bombay**

These notes give a rapid review of the rudiments of classical commutative algebra. Some of the main results whose proofs are outlined here are: Hilbert basis theorem, primary decomposition of ideals in noetherian rings, Krull intersection theorem.

(

**6467**views)

**The CRing Project: a collaborative open source textbook on commutative algebra**

by

**Shishir Agrawal, et al.**-

**CRing Project**

The CRing project is an open source textbook on commutative algebra, aiming to comprehensively cover the foundations needed for algebraic geometry at the EGA or SGA level. Suitable for a beginning undergraduate with a background in abstract algebra.

(

**5597**views)