**Linear Elliptic Equations of Second Order**

by Erich Miersemann

**Publisher**: Leipzig University 2012**Number of pages**: 87

**Description**:

These lecture notes are intended as an introduction to linear second order elliptic partial differential equations. From the table of contents: Potential theory; Perron's method; Maximum principles; A discrete maximum principle.

Download or read it online for free here:

**Download link**

(490KB, PDF)

## Similar books

**Entropy and Partial Differential Equations**

by

**Lawrence C. Evans**-

**UC Berkeley**

This course surveys various uses of 'entropy' concepts in the study of PDE, both linear and nonlinear. This is a mathematics course, the main concern is PDE and how various notions involving entropy have influenced our understanding of PDE.

(

**15357**views)

**Partial Differential Equations with Maple**

by

**Robert Piche, Keijo Ruohonen**-

**Tampere University of Technology**

The course presents the basic theory and solution techniques for the partial differential equation problems most commonly encountered in science. The student is assumed to know something about linear algebra and ordinary differential equations.

(

**9114**views)

**Lectures on Periodic Homogenization of Elliptic Systems**

by

**Zhongwei Shen**-

**arXiv.org**

In recent years considerable advances have been made in quantitative homogenization of PDEs in the periodic and non-periodic settings. This monograph surveys the theory of quantitative homogenization for second-order linear elliptic systems ...

(

**5202**views)

**Hilbert Space Methods for Partial Differential Equations**

by

**R. E. Showalter**-

**Pitman**

Written for beginning graduate students of mathematics, engineering, and the physical sciences. It covers elements of Hilbert space, distributions and Sobolev spaces, boundary value problems, first order evolution equations, etc.

(

**16255**views)